LABORATORY MODULE OUTLINE ATM3

1. GENERAL INFORMATION

SCHOOL	OF APPLIED ARTS AND SUSTAINABLE DESIGN				
PROGRAM COURSE	Documentation and modeling of Monuments and				
	Archaeological Sites (ATM)				
LEVEL OF STUDY	POSTGRADUATE				
MODULE CODE	ATM3	SEMESTER OF STUDY 2nd			
MODULE TITLE	Advanced Modeling and Photorealism				
in case credits are awarded for sepa course, e.g. in lectures, laboratory exer for the entire course, give the and the total	rcises, etc. If cred weekly teaching	/parts of the its are awarded	HOURS	CREDIS	
Weekly teaching hours 19-	-20 hours x 13 v	weeks	250	10 ECTS	
COURSE TYPE Compulsory, Optional, Optional mandatory	Elective				
PREREQUISITE MODULES:	None				
LANGUAGE OF INSTRUCTION	Greek				
AND EXAMS					
THE MODULE IS OFFERED TO	No				
ERASMUS STUDENTS MODULE WEBSITE (URL)	https://www.gap.gr/on/documentation.and.modeling.ef				
WIODOLE WEBSITE (OKL)	https://www.eap.gr/en/documentation-and-modeling-of- monuments-and-archaeological-sites-atm-thematics/#atm3				
	Each laboratory module has its own space in the Learning				
	Management System of HOU				
	(https://courses.eap.gr/login/index.php), with controlled access				
	(use of code) for students and teaching staff.				

2. LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

Upon successful completion of the course module, students will be able to:

- Understanding of practices for processing and transforming 3D objects.
- Familiarity with the characteristics of the virtual camera and its placement methods in relation to space and light.
- Knowledge of the algorithms used for the virtual representation of lighting.
- Application of the basic properties of digital materials and their mapping to objects.
- Knowledge of the main parameters that determine the performance of three-dimensional objects in the digital space.

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

Search for, analysis and synthesis of data and Project planning and management

information by the use of appropriate

technologies,

Adapting to new situations

Decision-making

Individual/Independent work

Group/Team work

Working in an international environment

Respect for diversity and multiculturalism

Environmental awareness

Social, professional and ethical responsibility and

sensitivity to gender issues

Critical thinking

Development of free, creative and inductive thinking

Working in an interdisciplinary environment (Other......citizenship, spiritual freedom, social Introduction of innovative research awareness, altruism etc.)

- Search for, analysis and synthesis of data and information by the use of appropriate technologies
- **Environmental awareness**
- Adapting to new situations
- **Decision-making**
- Individual/Independent work
- Group/Team work
- Working in an interdisciplinary environment
- Critical thinking
- Development of free, creative and inductive thinking

3. MODULE CONTENT

bibliography,

The course module "Advanced Modeling and Photorealism" covers the processes of three-dimensional design on a computer by describing the relevant theories for the three-dimensional digital space, the creation of objects and their photorealistic display. The aim of the Laboratory course module is to understand the way in which we observe and work in the virtual three-dimensional space. With the successful completion of the module, the students will have acquired the necessary knowledge for the design of three-dimensional objects and their photorealistic visualization.

4. TEACHING METHODS--ASSESSMENT

tutorials, Internship,

Workshop, Interactive teaching, Educational

visits, projects, Essay writing, Artistic creativity,

MODES OF DELIVERY Face-to-face, in-class lecturing, distance teaching and distance learning etc.	Distance education with five Group Counseling Meetings (OSS) during the academic year on weekends.		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY Use of ICT in teaching, Laboratory Education, Communication with students	We use: Remote meetings tools (cisco webex), Presentation software (e.g. power point), 3d modeling software (i.e. Blender) Additionally, the students use office automation tools, web browsers and e-reader for digital books.		
MODULE DESIGN Description of teaching techniques, practices and methods: Lectures, seminars, laboratory	Activity	Annual Workload	
practice, fieldwork, study and analysis of	3 OSS (x 3 hours)	9	

3 tutorial exercises (3 x 20

Individual study (11 hours x

hours)

Final project

13 weeks)

60

40

143

The study hours for each learning activity as
well as the hours of selfdirected study are given
following the principles of the ECTS.

Total laboratory module workload (hours)

250

STUDENT PERFORMANCE EVALUATION/ASSESSMENT METHODS

Detailed description of the evaluation procedures.

Language of evaluation, assessment methods, formative or summative (conclusive), multiple choice tests, short- answer questions, openended questions, problem solving, written work, essay/report, oral exam, presentation, laboratory work, other.....etc.

Specifically defined evaluation criteria are stated, as well as if and where they are accessible by the students

Completion of assignments during the academic semester, and final project. Assignments/projects consist of a theory part, and an applied one. Final oral exam as part of the project submission to verify authorship of projects and establishment of the level of knowledge of those taking part in the exams. For further information go to the <u>EAP Study Guide</u>.

5. SUGGESTED BIBLIOGRAPHY

- Suggested bibliography:
- Ζερεφός, Σ. (2013). Ψηφιακή Απόδοση Φωτισμού: Θεωρία και Εφαρμογές. (Τόμος Γ΄). Πάτρα:
 ΕΑΠ.
- Σαντοριναίος, Μ., Ζώη, Σ., Δημητριάδη, Ν., Διαμαντόπουλος, Τ., Μπαρδάκος, Γ. 2015. Τα ψηφιακά εργαλεία καλλιτεχνικής έκφρασης που αφορούν στις νέες εικόνες (τριδιάστατα γραφικά). [Κεφάλαιο Συγγράμματος]. Στο Σαντοριναίος, Μ., Ζώη, Σ., Δημητριάδη, Ν., Διαμαντόπουλος, Τ., Μπαρδάκος, Γ. 2015. Από τις σύνθετες τέχνες στα υπερμέσα και τους νέους εικονικούς-δυνητικούς χώρους. Ένα εγχειρίδιο για τον καλλιτέχνη που ασχολείται με την ψηφιακή τέχνη.. [ηλεκτρ. βιβλ.] Αθήνα:Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. κεφ 8. Διαθέσιμο στο: http://hdl.handle.net/11419/6084
- Λαζαρίνης, Φ. 2015. Θεωρία Ψηφιακών Γραφικών 3Δ & Σχεδιοκίνησης. [Κεφάλαιο Συγγράμματος]. Στο Λαζαρίνης, Φ. 2015. Πολυμέσα. [ηλεκτρ. βιβλ.] Αθήνα:Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. κεφ 4. Διαθέσιμο στο: http://hdl.handle.net/11419/2050

-Related scientific Journals: