MODULE OUTLINE

1. GENERAL INFORMATION

SCHOOL	SCHOOL OF SCIENCE AND TECHNOLOGY				
PROGRAM COURSE	Master's in Teaching Natural Science MSc				
LEVEL OF STUDY	POSTGRADUATE				
MODULE CODE	KFE51 YEAR OF STUDY 1 st /2 nd				
MODULE TITLE	Motion, Constitution and Fundamental Interactions				
WIODOLL IIILL	of Matter				
	ENT TEACHING ACTIVITIES				
in case credits are awarded for se	•				
the course, e.g. in lectures, labora	•	HOURS		CREDIS	
are awarded for the entire cours					
and the total					
	Weekly teaching hours 18-19* 30 weeks		560		20 ECTS
COURSE TYPE	Compulsory				
Compulsory, Optional, Optional					
mandatory					
PREREQUISITE MODULES:	None.				
LANGUAGE OF INSTRUCTION	Greek				
AND EXAMS					
THE MODULE IS OFFERED TO	No				
ERASMUS STUDENTS					
MODULE WEBSITE (URL)	https://www.eap.gr/en/postgraduate-specialization-of-				
	teachers-of-natural-sciences/topics/#k51				
	Each module has its own space in the Learning				
	Management System of EAP (http://study.eap.gr), with				
	controlled access (use of code) for students and				
	teaching staff.				

2. LEARNING OUTCOMES

Learning Outcomes

• The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

By the end of this course, students will be able to,

Describe the laws of motion and the conservation laws of Newtonian Mechanics, the Lorentz transformations of special relativity, the harmonic oscillator in the presence of friction and driving forces, the Fermat principle and the applications of geometrical optics, the laws of Statistical Mechanics and Thermodynamics, the physics of waves and the propagation of electromagnetic waves, the interference and diffraction phenomena, the laws of electrostatics and magnetostatics, the radiation

from an accelerated charge and the basic principles of quantum mechanics.

Apply the laws of classical mechanics and evaluate the planetary motion, solve the equations of motion using numerical methods, explain the relativistic phenomena of radiation, the Doppler effect and the aberration of light, calculate the dipole radiation pattern and the refractive index of low density and dense materials, examine the absorption and the scattering of light, demonstrate the operation of thermal machines, the black body radiation and the transmission of acoustic waves. Explain the electric field effects in the atmosphere, the operating principle of electron microscopes and electric motors, the plasma oscillations, the Bohm-Aharonov effect, the bremsstrahlung and the synchrotron radiation.

Examine complicated phenomena using the basic laws of physics, compare modern physics with classical physics analogues, the Fermat's principle with the principle of least action and quantum electrodynamics, and demonstrate the limits of the classical approach to microcosm as well as the use of the thought experiments in physics.

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

Search for, analysis and synthesis of data and Project planning and management information by the use of appropriate Respect for diversity and multiculturalism

technologies, Environmental awareness

Adapting to new situations Social, professional and ethical responsibility and

Decision-making sensitivity to gender issues

Individual/Independent work Critical thinking

Group/Team work Development of free, creative and inductive thinking

Working in an international environment

Working in an interdisciplinary environment (Other......citizenship, spiritual freedom, social

Introduction of innovative research awareness, altruism etc.)

Working in an interdisciplinary environment

Search for, analysis and synthesis of data and information by the use of appropriate technologies,

Adapting to new situations Individual/Independent work

Critical thinking

Development of free, creative and inductive thinking

Introduction of innovative research

3. MODULE CONTENT

The objective of the module it to educate students in the Theory of Classical and Modern Physics

The key subjects of the module are:

A. Modern Perceptions of Classical Physics: Review of Classical Physics through the lens of the Modern perception of Nature (Laws of Conservation, Symmetries, Statistical

Descriptions of Nature, Electromagnetism, Fields, Waves and Light, Relativity)

- B. Quantum Description of the Cosmos: Review of Basic Quantum Physics, Applications of Quantum Physics, Applications of Quantum Physics to Solids, Atoms, and Nuclei.
- C. Elementary Particles and Cosmology

4. TEACHING METHODS--ASSESSMENT

MODES OF DELIVERY	Distance education with five Group Counseling				
Face-to-face, in-class lecturing,	Meetings (OSS) during the academic year on				
distance teaching and distance	weekends.				
learning etc.					
USE OF INFORMATION AND	We use :				
COMMUNICATION	Remote meetings tools (cisco webex),				
TECHNOLOGY	Presentation software (e.g. power point),				
Use of ICT in teaching, Laboratory	Web Browsers				
Education, Communication with	e-reader for digital books				
students	In addition, students use word processing software in				
	all written assignments as well as spreadsheets to				
	create graphs and develop simulations				
MODULE DESIGN					
Description of teaching	Activity	Annual Workload			
techniques, practices and	6 OSS (* 4 hours)	24			
methods: Lectures, seminars,	Preparation of	60			
laboratory practice, fieldwork,	Assignments (3				
study and analysis of	assignments * 20 hours)				
bibliography, tutorials, Internship,	Completion of Activities	60			
Art Workshop, Interactive	(3*20 hours)				
teaching, Educational visits,	Examination	3			
projects, Essay writing, Artistic	Individual study	413			
creativity, etc	Total module workload				
	(hours)	560			
The study hours for each learning					
activity as well as the hours of					
selfdirected study are given					
following the principles of the					
ECTS.					
STUDENT PERFORMANCE	Elaboration of written assignments and activities				
EVALUATION/ASSESSMENT	during the academic year, the average of the grades of				
METHODS	which participates in the formation of the final grade				

Detailed description of the evaluation procedures.

Language of evaluation, assessment methods, formative or summative (conclusive), multiple choice tests, short- answer questions, open-ended questions, problem solving, written work, essay/report, oral exam, presentation, laboratory work, other.....etc.

Specifically defined evaluation criteria are stated, as well as if and where they are accessible by the students

of module by 30%, if there is a passable in the final or repetitive examinations. In the final written exams the grade of the written assignments participates in the formation of the final grade of module by 70%.

All the criteria are posted, both in each written assignment (in the LMS http://study.eap.gr), as well as in the general regulation of HOU at:

https://www.eap.gr/wp-

<u>content/uploads/2022/03/kanonismos-spoudwn-isxys-apo-to-didaktiko-etos-2022-2023.pdf</u>

(6) SUGGESTED BIBLIOGRAPHY

- Suggested bibliography:

Feynman Lectures I, II, III

available at the link: https://www.feynmanlectures.caltech.edu

Giancoli, Douglas C., Physics: Principles with Applications

University Physics with Modern Physics, Hugh D.Young Roger A. Freedman

Physics for Scientists and Engineers, Raymond A. Serway, John W. Jewett

Fundamental of Physics, David Halliday - Robert Resnick - Jearl Walker

Theoretical mechanics, Spiegel, Murray R.

Optics, Hecht Eugene

The Physics of Vibrations and Waves, Pain J. H.

Vibrations and Waves, A.P. French

Introduction to Electrodynamics, David J. Griffiths

Special Relativity, A.P. French

Introduction to Quantum Physics, A.P. French, Edwin F. Taylor

An Introduction to Nuclear Physics, W. N. Cottingham, D. A. Greenwood

Introduction to Elementary Particles, David J. Griffiths

An Introduction to Modern Cosmology, Andrew Liddle

-Related scientific Journals:

Physics Education, IOP

European Journal of Physics, IOP

Physics, MDPI

American Journal of Physics, AAPT

The Physics Teacher, AAPT

8) ACM SIGOPS Operating Systems Review