
Study Guide Academic Year 2025-2026

HELLENIC OPEN UNIVERSITY

SCHOOL OF APPLIED ARTS AND SUSTAINABLE DESIGN

18, Parodos Aistotelous 263 35 Patra

Tel.: (+30) 2610367805 - 2610367806 -

2610367807 -2610367426

Email: info@eap.gr

URL: https://www.eap.gr/en/

Table of Contents

Leg	al Framework	1
Adr	ninistrative bodies of H.O.U	2
G	Soverning Council	2
S	enate	3
R	ector	3
٧	ice Rectors	3
Sch	pols of the H.O.U.	5
S	chool of Applied Arts and Sustainable Design	5
Stu	dies at the Hellenic Open University	7
Д	dmission/Registration Process	10
F	inancial Contribution — Scholarships	10
Stud	dy Programmes Offered	12
Sch	ool of Applied Arts and Sustainable Design	13
L	Indergraduate Courses	13
	Film Studies: Screenplay, Filmmaking, and Research	13
Р	ostgraduate Courses	58
	Graphic Arts-Multimedia (MA)	58
	Lighting Design (MA)	67
	Acoustic Design and Digital Sound (MSc)	79
	Protection of Cultural Heritage and Monuments of Nature from the Effe of Climate Change (Joint Degree)	
	Enviromental Design	.104
	Interaction Generative Design	.116
	Sustainable Interior Design of Buildings	.126
	Design of Visual Effects and Animation	.144
	Documentation and modeling of monuments and archaeological sites	.156
۸nn	and a second	170

Certification of English competency a	t level B2 170
---------------------------------------	----------------

Legal Framework

The Hellenic Open University (HOU) was legally founded with article 27, par. 1, of Law 2083/1992 (A' 159), provides higher education as a Higher Education Institution (H.E.I.), in accordance with the provisions of Article 3 of Law 4957/2022 (A' 141), is subject to the provisions of 4957/2022 (A' 141) Law for issues that are not regulated by the 5094/2024 (A' 39) Law and bears the international title "Hellenic Open University (H.O.U.)".

The mission of the Hellenic Open University (HOU) is to:

- a) provide open and distance undergraduate and postgraduate education and training,
- b) provide short-cycle study programmes through the development and use of appropriate educational material and teaching methods,
- c) provide pedagogical teaching methods, education, training and expertise, and
- d) scientific research

The objectives of the HOU include the promotion of scientific research, as well as the development of technology and methodology in the field of the transmission of knowledge in distance.

Administrative bodies of H.O.U.

Higher Education Institutions have the following administrative bodies, each of which exercises the responsibilities defined in Law 4957/2022 (A' 141):

a) Governing Council, b) Senate, c) Rector, d) Vice-rectors, e) Executive Director

Governing Council

The composition of the Governing Council (G.C.) of the Hellenic Open University (H.O.U.) is as follows:

- 1. **Emmanouil Koutouzis,** Professor, School of Humanities (internal member).
- 2. **Ioannis Kalavrouziotis**, Professor, School of Science and Technology (internal member).
- 3. Maria Hadjinicolaou, Professor, School of Science and Technology (internal member).
- 4. Augustinos Dimitras, Professor, School of Social Sciences, (internal member).
- 5. Vassilia Hatzinikita, Professor, School of Humanities (internal member).
- 6. **Stylianos Zerefos**, Professor, School of Applied Arts and Sustainable Design (internal member).
- 7. **Iosif Bouzakis**, Emeritus Professor of the first rank of the University of Patras (external member).
- 8. **Maria Boletsi**, Professor of Modern Green Studies at the University of Amsterdam and Associate Professor in Comparative Literature at Leiden University (external member).
- 9. **Evgenia Moraitou**, Chief Financial Director at a Commercial Company Group (external member).
- 10. **Eleni Xoplaki**, Academic Staff member, Justus Liebig University of Giessen (external member).
- 11. Loukas Zahilas, Clerk at CEDEFOP (external member).

Senate

The Senate is formed for the academic year 2025-2026 as follows:

- 1. Professor Emmanouil Koutouzis, Rector.
- 2. Professor **Antigone Detzortzi Vlavianou**, Dean of the School of Humanities of the Hellenic Open University, with Deputy Dean Associate Professor **Dimitrios Filippis**.
- 3. Professor **Prokopis Theodoridis**, Dean of the School of Social Sciences of the Hellenic Open University, with Deputy Dean Professor **Dimitrios Stergiou**.
- 4. Professor Irini Mavrommati, Dean of the School of Applied Arts and Sustainable Design of the Hellenic Open University with Deputy Dean Professor Lampros Doulos.
- 5. Professor **Kyriakos Bourikas, Dean** of the School of Science and Technology of the Hellenic Open University with Deputy Dean Professor **Georgios Hatzigeorgiou**.

According to the provisions of par. 2 of Article 16 of Law 4957/2022, the Vice Rectors have the right to participate in the meetings of the Senate without voting rights, as follows:

- 1. Professor **Athanassios Mihiotis**, Vice Rector for Research and Innovation (*without voting rights*).
- 2. Professor **Panagiotis Kayalis,** Vice Rector of Academic Affairs and Outreach (*without voting rights*).
- 3. Professor **Efthimios Zervas**, Vice Rector of Infrastructure and Finance (*without voting rights*).
- 4. Professor Vassilios Verykios Vice Rector of Student Affairs (without voting rights).

Rector

The position of **Rector** of the Hellenic Open University (H.O.U.) is held by **Emmanouil Koutouzis**, Professor of the first rank of the School of Humanities.

The term of office for the Rector of the Hellenic Open University (H.O.U.) is four years, starting on September 1, 2024, and ending on August 31, 2028.

Vice Rectors

According to the Rector's Act No. HOU 21720/02.09.2024 (Government Gazette B' 5030/04.09.2024), the areas of responsibility, the specific duties of the Vice Rectors of the Hellenic Open University (H.O.U.), and the order of substitution for the Rector are defined. The term of office for the four Vice Rectors of the H.O.U. is four years, starting on September 1, 2024, and ending on August 31, 2028.

Vice Rector for Research and Innovation

Athanassios Mihiotis, Professor of the School of Social Sciences with a specialization in "Management"

Vice Rector of Academic Affairs and Outreach

Panagiotis Kayalis, Professor of the School of Humanities with a specialization in "Modern Greek Literature (19th-20th c.)"

Vice Rector of Infrastructure and Finance

Efthimios Zervas, Professor of the School of Applied Arts and Sustainable Design with a specialization in "Environmental Impacts Technology"

Vice Rector of Student Affairs

Vassilios Verykios, Professor of the School of Science and Technology with a specialization in "Data Management"

SCHOOLS OF THE H.O.U.

The basic academic unit of the Hellenic Open University (H.O.U.) is the School.

The H.O.U. consists of the following Schools: a. School of Social Sciences b. School of Humanities c. School of Science and Technology d. School of Applied Arts and Sustainable Design. The Schools of H.O.U. operate as a single Department.

School of Applied Arts and Sustainable Design

The School of Applied Arts and Sustainable Design of the Hellenic Open University (H.O.U.) consists of the following bodies:

- a) Dean of the School
- b) Dean's Deputy of the School
- c) School's Assembly which is constituted in accordance with Article 29 and exercises the responsibilities of the Department's Assembly as outlined in Article 30 of Law 4957/2022 (A' 141).
- d) Deanery, which is constituted in accordance with Article 22 of Law 4957/2022 (A' 141), exercises the duties of Article 23 of the same Law and those provided by Law 5094/2024 (A' 39).

The School of Applied Arts and Sustainable Design's Assembly for the academic year 2024-2025 is formed as follows:

- 1. **Irini Mavrommati,** Professor with a specialization in "Graphic Design and Design with the Use of PC", **Dean of the School.**
- 2. **Lampros Doulos**, Professor with a specialization in "Lighting Technology with applications in energy optimization and the coupling of Natural and Artificial Lighting in the Human Environment", **Dean's Deputy of the School.**
- 3. Efthimios Zervas, Professor with a specialization in "Environmental Impacts Technology"
- 4. **Stylianos Zerefos,** Professor with a specialization in "Architectural Analysis and Synthesis with Digital Media and Lighting Simulation"
- 5. **Nectaria Gizani**, Associate Professor with a specialization in "Radio astronomy, Astroparticle Physics and Climate Change"
- 6. **Iro Laskari**, Assistant Professor with a specialization in "Visual Communication, Visual Perception and Audiovisual Synthesis in Augmented Digital Environments"
- 7. **Sophia Sotiropoulou**, Assistant Professor with a specialization in "Preventive Conservation for coloured objects of moveable heritage"

Undergraduate Students' Representative: not defined yet

Postgraduate Students' Representative: not defined yet

PhD Candidates' Representative: not defined yet

Professor Emeritus:

Dimitrios Zevgolis, Professor Emeritus

Academic Head of Erasmus 2004-2018 DPS GTP 2000 – 2018

The School of Applied Arts and Sustainable Design's Deanery for the academic year 2025-2026 is formed and composed as follows:

Dean: Professor Irini Mavrommati

Dean's Deputy: Professor Lampros Doulos

Members:

- 1. Professor Efthimios Zervas
- 2. Professor Stylianos Zerefos
- 3. Assistant Professor Sophia Sotiropoulou

Studies at the Hellenic Open University

The Hellenic Open University (H.O.U.) awards:

- a) Undergraduate Degrees
- b) Postgraduate Degrees.
- c) Doctoral Degrees.

Also, it issues:

- a) Certificates of Module and Laboratory Module Attendance.
- b) Training Certificates.

According to Article 18 of Law 5094/2024 (A' 39):

"Individual academic and operational Units which are part of the Schools of the Hellenic Open University (H.O.U.) include:

a) The Module (Md.), b) the Laboratory Module (L.Md.) and c) the Practical Training Module (P.T.Md.), each of which covers one (1) distinct subject at undergraduate and postgraduate level.

Each Module (Md.) lasts one (1) academic year or one (1) academic semester and corresponds to the specified number of ECTS credits as defined by the programme's Regulation of Studies. Each Laboratory Module (L.Md) includes a number of laboratory exercises in addition to the theoretical content of the studies it may encompass. The duration of the L.Md. extends over one (1) academic year or one (1) academic semester and corresponds to the specified number of ECTS credits as defined by the programme's Regulation of Studies".

Obtaining a Bachelor's Degree (first cycle of studies)

To obtain a degree from the Hellenic Open University (H.O.U.), students are required to complete the Programme of Studies as outlined in the Programme's Structure.

Obtaining a Master's Degree

To obtain a Master's degree, candidates are required to hold a Bachelor's degree or an equivalent higher education diploma, successfully complete and pass the examinations for the required Modules (Md.), Laboratory Modules (L.Md.) or Practical Training Modules (P.T.Md.) as specified by the Programme of Studies.

Obtaining a Doctoral Diploma

To obtain a doctoral degree, candidates are required to hold a relevant Master's degree and to write a doctoral thesis.

Studies are offered within each Module (Md.) through **distance learning** and includes the following:

Students receive and study the educational material (in printed or electronic form), which is in line with the requirements of distance learning. Students who are educated remotely rely much more on the educational material than those in traditional forms of education, due to the limited communication they can have with the instructor and with their fellow students. Therefore, the educational material "teaches" the students, and it needs to be designed in such a way as to compensate, to the greatest extent possible, for the absence of direct educational communication and, in general, fulfills the various teaching functions that are carried out in traditional education. To meet these needs, the educational material must be created in a way (and include the appropriate elements) in order to:

- Guide the students during their studies.
- Promote the essential for the learning procedure interaction of the student with the learning material (through exercises and assignments).

- > Explain difficult points and concepts.
- > Assess and inform the student about their progress.
- Motivate and encourage the student to continue.

Allow the students to freely choose the place, time, and pace of their studies.

For these reasons, the H.O.U. has developed specialized educational materials for all Modules (Md.), which are tailored to the requirements of distance education.

For each Module (Md.), it is estimated that approximately ten (10) hours of study per week are needed. Each undergraduate Md. consists of approximately 800 pages of examinable material, while each postgraduate Md. consists of approximately 1.000 pages. However, the aforementioned numbers of pages are indicative and vary from programme to programme, depending on its content and requirements. To meet these study demands, students must effectively organize their time and plan their activities.

The material may be accompanied by a "Study Guide" (parts of which can be found in the Digital Learning Spaces, and specifically in the digital area of the Module), which includes the study and written assignment schedule, the syllabus, the examinable material, and more. It is important for students to carefully review this Guide and adhere to the study schedule, especially the deadlines for submitting their assignments to their tutor.

Students are continuously supported by their Professors - Advisors and communicate regularly with them. The communication between Professors - Advisors and their students takes place either by phone, or via email, or through tele-conferencing during designated hours with an open discussion system.

During communication with students, the Tutor is informed about the individual, social, educational, and professional characteristics of the students, as well as about their needs and expectations from the Md., in order to adjust their teaching accordingly. Additionally, the Tutor motivates students during their learning journey, connects them with each other to exchange experiences, form study groups, work on assignments, and more. The Tutor also suggests additional bibliographic sources, informs and prepares students for upcoming assignments, exams, and so forth.

The work of the instructors for each Md. is regulated by the Coordinator of the Md. The Coordinator ensures the consistency of their activities, coordinates their work, and develops the topics for written assignments and final examinations with them. Additionally, the Coordinator evaluates the performance of the instructors. The work of an entire Programme of Studies is coordinated by the Director of the Programme.

Over the period of the distance teaching of a Md., Group Counseling Meetings (G.C.M.) are organized on the basis of a relevant decision of the Deanery. These meetings are held on non-working days and hours, unless not possible for objective reasons and in special and exceptional cases. The number of meetings is at least three (3) for P.S. with semester-long Modules and at least five (5) for P.S. with term-long Modules, and the duration of each meeting is four (4) hours. When the G.C.M. of the Module are conducted remotely via teleconference, the duration of each G.C.M. may be reduced, while their number is increased correspondingly so that the total duration of the G.C.M. remains unchanged. In the case of Laboratory Module (L.Md) that offer face-to-face or distance laboratory training of more than two (2) days, the number of G.S.M. shall be at least two (2) for semester-long courses and

three (3) for annual courses and their duration shall be between two (2) and four (4) hours each. In the case of L.Md. that offer face-to-face or distance online practice for one (1) day, then the same requirements as for Md apply and the day of laboratory practice counts towards the total number of G.S.M..

According to the decision No. 558/ak.th.3.7/27.07.2022 of the Board of Directors, starting from the academic year 2022-2023 and onwards, Group Counseling Meetings (G.C.M.) will be conducted remotely.

In each G.C.M. typically an average of 25 students participate who make up the group, and each G.C.M. is coordinated by the designated instructor. Additionally, students are required to complete Educational Activities (E.A.) which are evaluated by the instructor.

The graded educational activities within a Md. include: written assignments, exercises, tests, laboratory practice, presentations, etc. Educational activities are submitted exclusively through the H.O.U. educational platform, except for laboratory practice, presentations, or other specialized activities.

The deadlines for submitting the educational activities are indicated in the Study Schedule/Calendar of each Md.

Any other optional (non-graded) educational activity (e.g. quiz, etc.) may be posted on the educational platform, if the T.S.G. of the Md. so decides. Each educational activity is graded on a scale with a maximum score of ten (10).

To be eligible to participate in the final examinations, a student must (a) achieve at least 50% of the potential maximum score from the total of graded activities, and (b) submit more than half of the total number of graded educational activities. The graded activities may not account for more than 40% of the total Md. grade, -unless otherwise specified in the Government Gazette establishing the programme- and are only included in the final grade after successful participation (≥5) in the final examinations. The aforementioned restrictions do not apply to L.Md. and the relative grading weight of each activity/examination as well as the total number of activities are defined by the relevant S.P.C./A.S.C. with the approval of the School's Deanery. Any deviations from the above requires a special decision by the Senate/Board of Directors following a justified proposal by the School's Deanery. The number of E.A. is 4-6 for term-long Md. and 3-4 for semester-long Md.

The right to participate in the final exams of a Module is granted to students who have enrolled in it and have also fulfilled their educational obligations (educational activities) as specified above.

The examination periods are defined as follows:

Each academic term has the following academic periods:

- a) January-February (1st period), for students enrolled in S.P. with semester-long Md.,
- b) May-June (2nd period) for students enrolled in S.P. with semester-long and term-long Md.,

- c) June-July (**repeat**), the repeat examination period for students enrolled in programmes with semester-long and term-long Md.,
- d) September (**3**rd **period**), for final-year students enrolled in undergraduate S.P. with semester-long/term-long Md. and final-year students enrolled in post-graduate S.P. with term-long Md.

Students who do not achieve a passing grade in three (3) consecutive examination attempts for P.P.S. with semester-long structure or four (4) consecutive examination attempts for P.P.S. with annual structure, or fail to attend the exams, must re-enroll in the Md. with full financial and educational obligations.

The details regarding enrollment at the Hellenic Open University (H.O.U.) are specified by the Regulation of Studies.

Method of calculating the degree/diploma grade for Programmes of Studies based on the European Credit Transfer and Accumulation System (ECTS): For the calculation of the degree grade of the Programmes of Studies based on the European Credit Transfer and Accumulation System (ECTS) system, the weight of the Modules/courses is taken into account according to the ECTS credits assigned to them.

Admission/Registration Process

According to the article 22, par. 2 of Law 5094/2024 (A' 39) the enrolment of the students in the Programmes of Studies offered by H.O.U takes place without exams. The candidates should submit their application within the deadlines and according to the procedure the Senate sets for each academic year. The call for expressions of interest from prospective students for the programmes of studies is posted on the Hellenic Open University (H.O.U.) website.

The enrolment of the bachelor students requires an Upper Secondary School Certificate Level 4 of the Hellenic Qualification Framework or equivalent of Foreign Certificate.

By decision of the Senate, the total number of positions available for undergraduate and postgraduate students is determined for each academic year. By a similar decision the number of additional positions available for undergraduate or postgraduate students is established, which cannot exceed fifteen percent (15%) of the annual number of positions provided. By a similar decision the conditions, requirements, methods, bodies, and procedures for selecting candidates for admission to the Hellenic Open University (H.O.U.) are specified, as well as any other details related to the admission of undergraduate and postgraduate students to the H.O.U.

Students with serious health conditions are also admitted to the Hellenic Open University (H.O.U.) at a rate of 5% in addition to the designated number of positions for undergraduate programmes.

Financial Contribution - Scholarships

Students participate in the costs associated with the implementation of the open and distance learning system.

Student scholarships are offered, on the provision that certain economic, social and academic criteria are met. The scholarships awarded by the HOU cover either the full amount or part of the financial participation payable by the students for the academic year they apply for a scholarship and provided that a combination of economic, social and academic criteria are met.

STUDY PROGRAMMES OFFERED

SCHOOL OF APPLIED ARTS AND SUSTAINABLE DESIGN

UNDERGRADUATE PROGRAMME (Bachelor Degree)

- Film Studies: Screenplay, Filmmaking, and Research

POSTGRADUATE PROGRAMMES (Master Degree)

- Graphic Arts-Multimedia
- Lighting Design
- Acoustic Design and Digital Sound
- Enviromental Design
- Joint Degree "Protection of Cultural Heritage and Monuments of Nature from the Effects of Climate Change"
- Interaction Generative Design
- Sustainable Interior Design of Buildings
- Design of Visual Effects and Animation
- Documentation and modeling of monuments and archaeological sites

School of Applied Arts and Sustainable Design

Undergraduate Courses

Film Studies: Screenplay, Filmmaking, and Research

Program Objective

The program aims to provide students with a) knowledge in various fields of audio-visual content and cinema production, with theoretical and practical skills in a wide variety of subjects, b) high-quality tertiary distance education, not only in "conventional" cinema-related subjects, but also further investigating issues of cinematic language and narratives, and c) animation skills.

Program General Description

The undergraduate study program (USP) "Film Studies: Screenplay, Filmmaking, and Research" aims to teach students the knowledge and skills required to seek employment in various fields of audio-visual and cinematic productions, by providing them with both theoretical and practical skills in a wide variety of subjects, while also providing pioneering, high-quality distance tertiary education in "conventional" cinema-related subjects and indepth education on aspects of cinematic language and narratives, directing, filmmaking practices and animation skills.

The program is linear, with a duration of four academic terms organized in 8 semesters. Students are admitted into the program every semester. To complete the program, the total number of ECTS credits students must earn are at least 240. The 240 ECTS credits are the sum total of a combination of units that under no circumstances may exceed 29.

Program Learning Outcomes

Upon completion of their studies, students will possess the skills required to:

- create any form of audio-visual project
- direct a brief/medium-duration audio-visual project, in any genre
- author cinematic scripts
- design the stages of an audio-visual production
- know the history of cinema from its beginnings to the present day
- apply their theoretical knowledge of cinema in audio-visual productions
- compose an audio-visual work through editing techniques
- create visual compositions through the use of cameras and lighting
- create the frame and lighting of a scene
- design movement in a work of animation
- create audio-visual works for educational purposes
- utilize all the alternative forms of communication and technology for the creation of audio-visual productions

Minimum Duration of Studies: 4 academic terms, i.e. 8 academic semesters.

Study Program ECTS Credits: 240 ECTS

UNESCO ISCED-2011 Classification:

According to education level: 6

UNESCO ISCED-2013 Classification:

 According to field of education: 0288: Arts and humanities, interdisciplinary programmes in the following sectors:

0114: Teacher training with subject specialisation

0210: Arts, not further defined

0211: Audio-visual techniques and media production

0212: Interior design

0212: Industrial design (artistic)

0212: Stage designing

0213: Fine arts

0213: Painting (art)

0213: Sculpture

0219: Arts, not elsewhere classified

0220: Humanities (except languages), not further defined

0232: Literature and linguistics

0611: Computer use

0612: Computer media applications

Admission Requirements

The USP accepts graduates of High Schools or holders of corresponding or similar secondary education degrees earned either abroad or in Greece.

Knowledge of a foreign language as well as familiarity with the use of computers, e-mail, and the Internet will significantly facilitate participation in the program.

Contact Information

Student Register Office:

Telephone number: +30-2610 367337 - E-mail: ski@eap.gr

Student Support Office

 $Telephone \ number: \ +30-2610367805 \ -\ 2610367806 \ -\ 2610367807 \ -2610367426 \ -\ E-mail:$

info@eap.gr

Course Structure

The undergraduate study program "Film Studies: Screenplay, Film-making, and Research" (SKI) is organized into eight (8) academic semesters - i.e. four (4) academic terms - which include:

1. thirty-one (31) Course Module (C.M.): eight (8) Mandatory, twenty-one (21) Elective, and two (2) Mandatory elective.

2. Fifteen (15) Laboratory Course Module (L.C.M.): seven (7) Mandatory and eight (8) Elective.

The total number of academic credits (ECTS) required to earn the degree are 240 ECTS, comprising the sum of a combination of no more than 29 total C.M. and L.C.M.

From the 4th semester onwards, students may select elective C.M. or L.C.M. The ECTS value of the C.M. and L.C.M. selected per semester must be equal or close to 30.

Elective C.M. and L.C.M. must contain a minimum of 10 enrolled students to form classes.

The Program is organized per term and semester as follows:

SKI10 cin SKI11 Filr SKI12 Scr SKI13 Dir	C.M./L.C.M. Title story of Cinema I: Overview of the history and development of the art of the story of the mid-20th century on Theory I: Philosophy of images and audio-visual compositions reenplay I: Dramatic Narration rection I: Basic audio-visual narrative tools and techniques. Filming	Type, ECTS (M ¹ , 7.5 ECTS) (M, 7.5 ECTS) (M, 7.5 ECTS)
SKI10 His cin SKI11 Filr SKI12 Scr SKI13 Dir	story of Cinema I: Overview of the history and development of the art of them up to the mid-20th century of Theory I: Philosophy of images and audio-visual compositions reenplay I: Dramatic Narration rection I: Basic audio-visual narrative tools and techniques. Filming	(M ¹ , 7.5 ECTS) (M, 7.5 ECTS)
SKI10 cin SKI11 Filr SKI12 Scr SKI13 Dir	nema up to the mid-20th century m Theory I: Philosophy of images and audio-visual compositions reenplay I: Dramatic Narration rection I: Basic audio-visual narrative tools and techniques. Filming	(M, 7.5 ECTS)
SKI12 Scr SKI13 Dir	reenplay I: Dramatic Narration rection I: Basic audio-visual narrative tools and techniques. Filming	
SKI13 Dir	rection I: Basic audio-visual narrative tools and techniques. Filming	11VI. / .J LUIJI
	anaration and practicos	(M, 7.5 ECTS)
2nd Semester	eparation and practices	
His	story of Cinema II: Overview of the history and development of the art of	
CK I ZII	nema from the mid-20th century to the present	(M, 7.5 ECTS)
	reenplay II: Characters in cinematic narratives	(M, 7.5 ECTS)
	rection II: The film creation process. Examination of the plot chronology and	
(L.C.M.) noi	n-linear narrative techniques	(M, 7.5 ECTS)
SKI23 Edi (L.C.M.)	iting I: Introduction to the fundamental principles of editing	(M, 7.5 ECTS)
2nd Academic Te	erm	
3rd Semester		
	listory of Cinema III: Comparative study of currents and schools (Hollywood nd the Russian Avant-garde)	(M ¹ , 7.5 ECTS)
(I C M) St	rhotography direction I: Introduction to the principles of cinematic visual torytelling. Static photography, static image processing, cinematic equipment	(M, 7.5 ECTS)
	creenplay III: Short film screenplays	(M, 7.5 ECTS)
	Direction III: Directing narrative scenes and creating drama	
(L.C.M.)		(M, 7.5 ECTS)
4th Semester		
	creenplay IV: Cinematic genre screenplays	(M, 7.5 ECTS)
SKI41 (L.C.M.)	Direction IV: From page to Screen. Sequences that form a narrative arc	(M, 7.5 ECTS)
	diting II: Audio and video editing. Aesthetic parameters, dialog, and practical applications	(M, 7.5 ECTS)
SKI43 H	listory of Cinema IV: Nouvelle vague, avant-garde cinema, and broader orms of transcending reality	(E ² , 7.5 ECTS)
SKI44 Fi	ilm Theory II: Cinema and Psychoanalysis. Dreams as a mechanism and their elation with film writing and experience	(E, 7.5 ECTS)
	nimation I: Film graphic design and basic principles of animation	(E, 7.5 ECTS)
3rd Academic Te		,,,
5th Semester		
SKI50 D	Direction V: Documentary, experimental film, "avant-garde", and non-linear	(E, 7.5 ECTS)
(L.C.M.) fi	ilm direction	(E, 7.3 EC13)
SKI51 (L.C.M.)	hotography direction II: Frame composition - camera movement - color	(E, 7.5 ECTS)
SKI52	ound and sound design	(E, 7.5 ECTS)

SKI53 SKI54 SKI55 SKI56 SKI57 6th Semester	Screenplay V: Adapted screenplays Animation II: CGI - 3D design, animation, rendering History of Cinema V: Italian neorealism Film Theory III: Self-referentiality, intertextuality, defamiliarization, estrangement Cinema and Anthropology	(E, 7.5 ECTS) (E, 7.5 ECTS) (E, 7.5 ECTS) (E, 7.5 ECTS) (E, 7.5 ECTS)	
SKI60 (L.C.M.) SKI61 SKI62 (L.C.M.) SKI63 SKI64 (L.C.M.) SKI65 SKI66 SKI67	Direction VI: Film acting - actor direction Screenplay VI: Television screenplays Photography direction III: Complex conditions - filters - advanced natural and artificial lighting conditions Scenography - costume design Editing III: Editing as a defining aspect of style Production I: Stages in the production of audio-visual projects History of Cinema VI: Films as historical documents and the director's perspective Film Theory IV: Semiotics of cinema. Theories of film text analysis and their evolution Animation III: Digital kinesiology - basic principles and techniques of animation - advanced rendering techniques Term	(E, 7.5 ECTS)	
7th Semester SKI70	Screenplay VII: Feature-length film screenplays	(E, 7.5 ECTS)	
SKI71 (L.C.M.)	Direction VII: Cinema and Music, structural similarities	(E, 7.5 ECTS)	
SKI72 (L.C.M.)	Editing IV: Post-production and special effects	(E, 7.5 ECTS)	
SKI73	Short-form film cultures	(E, 7.5 ECTS)	
SKI74	Animation IV: Advanced 3D animation techniques	(E, 7.5 ECTS)	
SKI75	Production II: Development of audio-visual projects - pitching - audio-visual production business planning	(E, 7.5 ECTS)	
SKI76	SKI76 History of Cinema VII: From "Golfo" to the "Greek Weird Wave". The history of Greek cinema		
SKI77	Film Theory V: The impact of digital technology and information technology on the creation, reception, and dissemination of audio-visual messages	(E, 7.5 ECTS)	
SKI78	New narrative approaches to audio-visual storytelling	(E, 7.5 ECTS)	
8th Semester			
SK180 SK181	Research in cinematic narratives Cinematic project creation	(ME ³ , 30 ECTS) (ME, 30 ECTS)	

Notes:

M¹: Mandatory E²: Elective

ME³: Mandatory elective

C.M./L.C.M. Selection Instructions

Students may select from one (1) to four (4) C.M./L.C.M. per semester (limit: 30 ECTS per semester).

When selecting C.M., students must first select all the available C.M./L.C.M. that belong to the previous semesters and then select C.M./L.C.M. belonging to the next semester.

For example, students who have successfully completed one (1) first-semester C.M. and wish to select four (4) second-semester C.M./L.C.M. must select the three (3) remaining first-semester C.M./L.C.M. and then one (1) from the second semester, etc.

In the 8th semester: Students who have successfully completed all the C.M./L.C.M. belonging to previous semesters must select either SKI80 or SKI81 (30 ECTS)

The minimum duration of studies for the program is four (4) academic terms.

The total number of academic credits (ECTS) required to earn the degree are 240 ECTS, comprising the sum of a combination of no more than 29 total C.M. and L.C.M.

Prerequisites for C.M./L.C.M. selection

Students may only select certain C.M./L.C.M. if they have successfully completed certain other C.M./L.C.M. More particularly:

	viole particularly.		
-	SKI10 for SKI20	-	SKI41 for SKI60
-	SKI12 for SKI21	-	SKI40 for SKI61
-	SKI13 for SKI22	-	SKI51 for SKI62
-	SKI20 for SKI30	-	SKI31 for SKI63
-	SKI21 for SKI32	-	SKI42 for SKI64
-	SKI22 for SKI33	-	SKI30 for SKI66
-	SKI32 for SKI40	-	SKI11 for SKI67
-	SKI33 for SKI41	-	SKI54 for SKI68
-	SKI23 for SKI42	-	SKI32 for SKI70
-	SKI30 for SKI43	-	SKI41 for SKI71
-	SKI11 for SKI44	-	SKI64 for SKI72
-	SKI41 for SKI50	-	SKI68 for SKI74
-	SKI31 for SKI51	-	SKI65 for SKI75
-	SKI40 for SKI53	-	SKI30 for SKI76
-	SKI45 for SKI54	-	SKI11 for SKI77
-	SKI30 for SKI55		

Note: the elective courses: SKI56, SKI57, SKI66, SKI68, SKI73, SKI76 & SKI77 will not be offered for study from the academic year 2025-2026.

A. Students' Evaluation in the Course Modules

SKI11 for SKI56

Course Module Evaluation

- **a1**. Two (2) Short Written Assignments (SWA) that contribute to the final grade with a weight equal to 10% each of them.
- **a2**. One (1) Written Assignment (WA) which contributes to the final grade with a weight equal to 20%.

The grade of the written assignments (SWA & WA) is secured when a grade equal to or above the passing grade (≥5) in the final exam or resit is achieved only.

a3. Final exam or resit (FE) contribute to the final grade with a weight equal to 60%.

The **Final Grade** of each Courses Module on the scale of 1 to 10 is calculated as:

Final Grade = $(SWA \times 0,1) + (SWA \times 0,1) + (WA \times 0,2) + (FE \times 0,6)$

Establishment of participation right in the final exam

Participation in the final examination will be allowed, if:

- 1. the sum of the grades of the aforementioned assignments (see a1 and a2) is equal to, or greater than 50% of the assigned grading scale, i.e. at least 20 points out of 100, based on the weights mentioned in points a1 and a2,
- 2. at least 2 of the 3 should be submitted.

SWA & WA grade on the scale of 1 to 100			
SWA1	SWA2	WA	Minimum grade that is required
(10%)	(10%)	(20%)	for participation in final exams
SWA1×1	SWA2 × 1	WA×2	20/100

B. Students' Evaluation in the Laboratory Course Modules "Direction" (SKI13, SKI22, SKI33, SKI41, SKI50, SKI60, SKI71):

Students' evaluation is carried out as:

- **a1.** Two (2) distance learning activities (ACT) that contribute to the laboratory module final grade with a weight equal to 15% each.
- **a2.** One (1) distance learning activity (ACT) that contribute to the laboratory module final grade with a weight equal to 20% each.
- **a3.** Five (5) days physical presence laboratory (PPL) practice that contribute to the laboratory module final grade with a weight equal to 20%.
- **a4.** One (1) Final written Assignment (FWA) in the context of physical presence laboratory practice that contribute to the laboratory module final grade with a weight equal to 30%.

Each distance learning activity, as well as the final written assignment, are evaluated on a scale of ten (10).

The average of the grades of all distance activities and physical presence laboratory –based on the above weighting mentioned at points a1 to a4– must be at least equal to or above five (≥ 5.0) .

However, the grades of the distance learning activities and the final written assignment are activated only with the proven physical presence in person in the laboratory exercise, otherwise the Laboratory Course Module is considered incomplete.

The Final Grade of each Laboratory Course Module, on a scale of 10, is calculated as:

Final grade of Laboratory Course Module = $(ACT1\times0.15) + (ACT2\times0.15) + (ACT3\times0.2) + (PPL\times0.2) + (FWA\times0.3)$

C. Students' Evaluation in the Laboratory Course Modules "Editing" (SKI23, SKI42, SKI64, SKI72):

Students' evaluation is carried out as:

- **a1.** Two (2) short distance learning activities (ACT1-ACT2) that contribute to the laboratory module final grade with a weight equal to 15% each.
- **a2.** One (1) distance learning activity (ACT3) that contribute to the laboratory module final grade with a weight equal to 30% each.
- **a3.** One (1) Final Written Assignment (FWA) that contribute to the laboratory module final grade with a weight equal to 40%.

Each distance learning activity, as well as the final written assignment, are evaluated on a scale of ten (10).

The average of the grades of all distance activities and physical presence laboratory –based on the above weighting mentioned at points a1 to a3– must be at least equal to or above five (≥ 5.0) .

However, the grades of the distance learning activities and the final written assignment are activated only with the submission of the final written assignment, otherwise the Laboratory Course Module is considered incomplete.

Establishment of participation right in the final exam

Participation in the final examination will be allowed, if:

- 1. the sum of the grades of the aforementioned assignments (see a1 and a2) is equal to, or greater than 50% of the assigned grading scale, i.e. at least 20 points out of 100, based on the weights mentioned in points a1 and a2,
- 2. at least 1 short distance learning activity of the 2 and the distance assignment should be submitted.

ACTs grade on the scale of 1 to 100				
ACT1	ACT2	ACT3	Minimum grade that is required	
(15%)	(15%)	(30%)	for participation in final exams	
ACT1 × 1,5	ACT2 × 1,5	ACT3 × 3	30/100	

The Final Grade of each Laboratory Course Module, on a scale of 10, is calculated as:

Final grade of Laboratory Course Module = (ACT1×0.15) + (ACT2×0.15) + (ACT3×0.3) + (FWA×0.4)

D. Students' Evaluation in the Laboratory Course Modules "Photography direction" (SKI31, SKI51, SKI62):

Students' evaluation is carried out as:

- **a1.** Two (2) distance learning activities (ACT1-ACT2) that contribute to the laboratory module final grade with a weight equal to 15% each.
- **a2.** One (1) distance learning activity (ACT3) that contribute to the laboratory module final grade with a weight equal to 30% each.
- **a3.** Two (2) days physical presence laboratory (PPL) practice that contribute to the laboratory module final grade with a weight equal to 20%.
- **a4.** One (1) Final Written Assignment (FWA) in the context of physical presence laboratory practice that contribute to the laboratory module final grade with a weight equal to 20%.

Each distance learning activity, as well as the final written assignment, are evaluated on a scale of ten (10).

The average of the grades of all distance activities and physical presence laboratory –based on the above weighting mentioned at points a1 to a4– must be at least equal to or above five (≥ 5.0) .

However, the grades of the distance learning activities and the final written assignment are activated only with the proven physical presence in person in the laboratory exercise, otherwise the Laboratory Course Module is considered incomplete.

Students' obligations are as follows:

- 1. Tree (3) distance learning Activities (ACTs).
- 2. Two (2) days physical presence laboratory (PPL) practice.

3. One (1) Final Written Assignment (FWA) in the context of physical presence laboratory practice.

Establishment of participation right in the final exam

Participation in the final examination will be allowed, if:

- 1. the sum of the grades of the aforementioned assignments (see a1 and a2) is equal to, or greater than 50% of the assigned grading scale, i.e. at least 30 points out of 100, based on the weights mentioned below,
- 2. at least 1 short distance learning activity of the 2 and the distance assignment should be submitted.

ACTs grade on the scale of 1 to 100				
ACT1 ACT2 ACT3 Minimum grade that is requ		Minimum grade that is required		
(15%)	(15%)	(30%)	for participation in final exams	
ACT1 × 1,5	ACT2 × 1,5	ACT3 × 3	30/100	

3. participate in person in the physical presence laboratory

The Final Grade of each Laboratory Course Module, on a scale of 10, is calculated as:

Final grade of Laboratory Course Module = $(ACT1\times0.15) + (ACT2\times0.15) + (ACT3\times0.3) + (PPL\times0.2) + (FWA\times0.2)$

Information about the Course Modules & Laboratory Course Modules

SKI10: History of Cinema I: Overview of the history and development of the art of cinema up to the mid-20th century

C.M. Code: SKI10

Academic Credits (ECTS) 7.5 C.M. Type: Mandatory

C.M. Specification: Theoretical (T)
Semester available: First (1st)
Teaching language: Greek
C.M. Objective - Description:

This is the first of two chronologically organized units (together with SKI20) that discuss the aesthetic, cultural, economic, and artistic aspects of Cinema over the course of its evolution. This unit covers the first half of the 20th century. No particular geographical region is emphasized. Rather, the unit examines currents that developed in various countries and political situations (France, Germany, Russian creators). The syllabus includes the history of animation as an intrinsic part of film history.

The C.M. aims to:

- Identify the contribution of the art of cinema to both the development and the better understanding of modern civilization
- Present the art of cinema in relation to the other art forms that shaped the profile of modern civilization
- Demonstrate the importance of animation for the development of cinematic writing

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

 understand the primary aspects of the theoretical discussion regarding the fundamental concepts of the art of cinema

- place the art of cinema within the wider context of its time
- understand the main stages in its development up to the end of the 2nd World War
- explain changes in cinema language in the face of technological advances and based on the corresponding shifts in social context
- comparatively analyze the genres of film writing and critically assess their similarities and differences.
- understand the genre of animation and its development
- understand the place of animation within the wider context of the evolution of cinema,
 as well as its relation with other genres
- know the most influential figures in the development of the art of cinema
- know the most historically significant films
- understand the importance of these films and be able to compare and analyze them from both an aesthetic and a sociological point of view
- prepare scholarly papers by employing critical thinking and utilizing the relevant literature, through structured, systematic study.

C.M. Subjects covered:

- General introduction to the art of cinema
- Provenance-beginnings-origins
- Particularities, principles of Animation
- Important events in the development of cinema up to 1950
- Directing approaches

C.M. Prerequisites: None.

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI11: Film Theory I: Philosophy of images and audio-visual compositions

C.M. Code: SKI11

Academic Credits (ECTS) 7.5

C.M. Type: Mandatory

C.M. Specification: Theoretical (T)
Semester available: First (1st)
Teaching language: Greek
C.M. Objective - Description:

This course module aims to familiarize students with a theoretical language, and a wider directly related to the present and constantly evolving- aesthetic discussion regarding the particularities and prospects of cinematic storytelling. As a basic point of reference, the philosophy refers to both the content of cinema as an art form and its formal audio-visual journey - indeed, the two are intrinsically connected. The unit will primarily focus on phenomenology, with particular emphasis on Maurice Merleau-Ponty, who demonstrated the everyday life and point of view of the subject through his works, and the philosophy of Gilles Deleuze, as expounded in his two-volume work on cinema (*Cinema I: The Movement-Image, Cinema II: The Time-Image*).

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Understand the philosophical, aesthetic, and theoretical particularities of cinematic storytelling, as well as philosophy as an intrinsic part of the art of cinema.
- Become familiar with significant names and works that will be necessary for their further development (theoretical and especially practical) regarding cinema.
- Know the contribution of the major philosophical currents and schools of thought, and their close connection with cinema.
- Understand the correlation between artistic and philosophical language, as well as how both relate to everyday life
- View the Philosophy of Film as a living, breathing trend, a direct means of subjective approach to cinema.

C.M. Subjects covered:

- Film Philosophy
- Film Aesthetics
- Introduction to Phenomenology and the Philosophy of Images
- Introduction to film theory

C.M. Prerequisites: None.

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI12: Screenplay I: Dramatic Narration

C.M. Code: SKI12

Academic Credits (ECTS) 7.5

C.M. Type: Mandatory

C.M. Specification: Skill Development (SD)

Semester available: First (1st) **Teaching language:** Greek **C.M. Objective - Description:**

The present C.M. aims to introduce students to the concept of "dramatic" storytelling. Initial lessons focus on Aristotle's "Poetics" and discussions of the most crucial aspect of drama - Myth. The concepts of "Beginning", "Middle", and "End" are discussed and presented in their modern form, the 3-Act Structure (Field / Seger). Additional concepts presented over the course of the lessons will be the "Hero's Journey" according to J. Campbell and Frank Daniel's eight-sequence structure.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Understand the narrative structure of a film.
- Know the basic concepts and terminology of screenplay language.
- Compose and document stories that could form the basis for a dramatic narrative.
- Identify the difference between "plot" and "topic".

C.M. Subjects covered:

- Presentation of the most prominent narrative models (3 Acts, 8 sequences, Campbell's Cycle)
- Structural analysis of feature films
- Composition of stories for short- or feature-length film screenplays

C.M. Prerequisites: None.

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI13: Direction I: Basic audio-visual narrative tools and techniques. Filming preparation and practices

L.C.M. Code: SKI13

Academic Credits (ECTS) 7.5 L.C.M. Type: Mandatory

L.C.M. Specification: Skill Development (SD)

Semester available: First (1st)
Teaching language: Greek
L.C.M. Objective - Description:

The present L.C.M. aims to present the means for telling a story through the use of images and sounds, transforming it into cinematic plot. Students will become familiarized with all the creative fields of audio-visual creation: Use of the frame, organization of visual information, characteristics of the cinematic image and their effect on the viewer's perception, the use of sound as a creative tool in conjunction with the image, the concepts of sequence, scene and shot as structural units of a cinematic text, as well as the importance of decoupage as a defining stylistic element, the function of "cuts" and the significance of editing in the creation of spatial and temporal continuity or discontinuity, and the importance of match cuts and axes. Furthermore, students will obtain practical experience of how to cover a scene, preproduction, organization, and shooting practice, as well as of the cooperation between the director and the other members of a film crew.

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- Understand how to tell a story with images and sounds.
- Create complete, simple cinema stories, through familiarization with the basic tools and methods used to create audio-visual works.
- Know the basic concepts and terminology of cinematic language.
- Understand how their aesthetic preferences contribute to the development of their personal style.
- Understand the process of preparing and carrying out a film shoot and the role the director plays in it.

L.C.M. Subjects covered:

- Audio-visual storytelling
- Story and plot
- Cinematic frame and organization of visual information
- Types of cinematic sound and their use
- The capabilities of editing
- Filming preparation and practices

L.C.M. Prerequisites None.

Teaching Method: In-person and distance learning, through the use of new technologies, Group Counseling Meetings (G.C.M.) and in-person workshops

Laboratory Installations: Municipality of Drama

SKI20: History of Cinema II: Overview of the history and development of the art of cinema from the mid-20th century to the present day

C.M. Code: SKI20

Academic Credits (ECTS) 7.5 C.M. Type: Mandatory

C.M. Specification: Theoretical (T) **Semester available:** Second (2nd)

Teaching language: Greek **C.M. Objective - Description:**

A direct continuation of SKI10, this unit adheres to the same structure and discusses international developments in cinema from the 60s to the present day. The syllabus includes the history of animation as an intrinsic part of film history.

The C.M. aims to:

- Demonstrate the contribution of the art of cinema to both the development and the better understanding of modern civilization
- View the art of cinema in relation to the other art forms that shaped the profile of modern civilization
- Illuminate the development of animation as a genre of cinema and its importance in the development of cinematic storytelling

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- understand the primary aspects of the theoretical discussion regarding the aesthetic principles and currents of the art of cinema
- Express qualified opinions and discuss the art of cinema, based on the wider cultural and social context.
- Understand the primary phases and currents in the development of cinema up to the mid-20th century
- Adequately explain evolutions in cinema language in the face of technological advances and based on the corresponding shifts in social context
- Identify the stages in the development of a particular animation language, and its evolution through the corresponding technological advances
- prepare scholarly papers by employing critical thinking and utilizing the relevant literature, through structured, systematic study.

C.M. Subjects covered:

- Storytelling theories
- Aesthetic currents in cinema
- Digital cinematography
- Aesthetics of Animation

C.M. Prerequisites: Successful completion of SKI10

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI21: Screenplay II: Characters in cinematic narratives

C.M. Code: SKI21

Academic Credits (ECTS) 7.5

C.M. Type: Mandatory

C.M. Specification: Skill Development (SD)

Semester available: Second (2nd)

Teaching language: Greek **C.M. Objective - Description:**

This C.M. discusses "character-centered" storytelling, as presented by Lajos Egri and other thinkers. Lessons will focus on the importance of characters, discussing how they are approached in dramatic storytelling, both in theory and through the viewing of selected films (either in part or in full) and subsequent analysis of their characters. Students participating in the C.M. will complete individual assignments with various different methods of approaching characters.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Identify the basic types of characters that recur in dramatic narratives.
- Identify the archetypal functions of characters in dramatic storytelling.
- Understand the different ways in which characters are built.
- Identify the particularities of character-centered narratives.

C.M. Subjects covered:

- Characters' biographies and back-stories
- Characters' languages
- Basic characters: Protagonist, Antagonist, Mentor, Pivotal Character
- Archetypal characters and their function (Shape-shifter, Trickster, Shadow, etc.)
- Analysis of film characters

C.M. Prerequisites: Successful completion of SKI12

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI22: Direction II: The film creation process. Examination of the plot chronology and non-linear narrative techniques

L.C.M. Code: SKI22

Academic Credits (ECTS) 7.5 L.C.M. Type: Mandatory

L.C.M. Specification: Skill Development (SD)

Semester available: First (1st)
Teaching language: Greek
L.C.M. Objective - Description:

Producing a feature film is the cooperative art form *par excellence*. To successfully complete their task, film productions need cooperation between all specializations involved in pursuit of a common creative goal. Naturally, the director plays a crucial role in the cultivation of just such a cooperative environment. The present L.C.M. discusses the parameters of this cooperation throughout all stages of production.

Lessons will also delve into the structure of film plots, focusing on the heterogeneity of temporal constructions and the particularities of linear, elliptical, and non-linear narrative structures. Another topic of discussion will be the internal timing of shots as related to how they are joined through editing, both in simple, linear narratives and in complex re-

organizations of the temporal axis through the use of precursors, recursions, inversions, reiterations and/or multiple versions of the same period of time. Finally, lessons will discuss how these structural choices serve the narrative and define viewer engagement.

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- Possess a clear idea of the preparation required to produce a film and how these preparations serve a director's preferences.
- Recognize and explain elements of non-linearity in a film plot.
- Understand the structure of time in films as a fundamental stylistic element.
- Understand the means by which temporal structure is developed throughout the stages of film development, from screenplay to editing.
- Creatively utilize time in their own cinematic narratives, experimenting with it to develop their own writing skills.

L.C.M. Subjects covered:

- Stages of film production and the director's role
- Linear narrative and temporal continuity
- Simple forms of non-linear structure
- Complex narratives
- The subjectivity of time
- Cinematic approaches to the mechanism of dreams

L.C.M. Prerequisites Successful completion of SKI13

Teaching Method: In-person and distance learning, through the use of new technologies, Group Counseling Meetings (G.C.M.) and in-person workshops

Laboratory Installations: Municipality of Drama

SKI23: Editing I: Introduction to the fundamental principles of editing

L.C.M. Code: SKI23

Academic Credits (ECTS) 7.5 L.C.M. Type: Mandatory

L.C.M. Specification: Skill Development (SD)

Semester available: First (1st)
Teaching language: Greek
L.C.M. Objective - Description:

Introduction to the fundamental principles of editing. The importance of "cuts" in the creation of a screenplay and their reception by the viewer. Introduction to digital editing (NLE). Introduction to the aesthetics and technology of audio and video editing. Familiarization with the basic functions of film editing software and practical training on brief scenes. Understanding of the basic sequence of technical tasks (work-flow) required to complete a film. Communication and implementation of tasks as related to other film directions (e.g. Photography Direction etc.).

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- understand the fundamental principles of editing software,
- understand the basic functions of editing software,
- understand the aesthetic preferences used to evaluate an edit,

- possess adequate editing skills to cooperate with other film directions,
- understand post-production work-flow,
- possess practical experience in editing successive scenes.

L.C.M. Subjects covered:

- Digital editing
- Post-production work-flow
- Basic principles of editing

L.C.M. Prerequisites None.

Teaching Method: Distance learning and Group Counseling Meetings (G.C.M.)

SKI30: History of Cinema III: Comparative study of currents and schools (Hollywood and the Russian Avant-garde)

C.M. Code: SKI30

Academic Credits (ECTS) 7.5 C.M. Type: Mandatory

C.M. Specification: Theoretical (T) Semester available: Third (3rd) Teaching language: Greek C.M. Objective - Description:

The present C.M. Aims to discuss and analyze the particular aesthetics and practices of directors belonging to the soviet school, who used dialectical editing in service of political and propaganda purposes. The crux of the matter is a form of cine-poetics or rhetoric originating in historical materialism, which seeks to create active, critical viewers and rejects cinematic "voyeurism", primarily through the Brechtian defamiliarization effect. This is contrasted with the academicism, practice of "invisible editing", identification and omnipotence of Hollywood and its dominant genres, the detective story and the western.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- recognize rhetorical editing practices.
- evaluate the soviets' use of temporal and spatial structure to achieve particular results.
- classify soviet cinematic conventions in relation to the dominant narrative type, according to their effectiveness.
- evaluate editing in general, as well as particular editing techniques, as regards their ability to create meaning.

C.M. Subjects covered:

- Classical narrative (analytic match cuts)
- Dialectical editing attraction editing
- Defamiliarization historical materialism
- Dominant forms of Hollywood cinema and identification

C.M. Prerequisites: Successful completion of SKI20

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI31: Photography direction I: Introduction to the principles of cinematic visual storytelling. Static photography, static image processing, cinematic equipment

L.C.M. Code: SKI31

Academic Credits (ECTS) 7.5 L.C.M. Type: Mandatory

L.C.M. Specification: Skill Development (SD)

Semester available: Third (3rd)
Teaching language: Greek
L.C.M. Objective - Description:

Introduction to the fundamentals of cinematic visual storytelling, through the aspects of technique and aesthetics that define Photography Direction. Students are introduced to static photography and its processing. Lessons will focus on the properties of various focal lengths that characterize lenses (fixed/primes & variable focal length/zoom), different formats (shooting and projection), and finally their various creative applications and combinations. Students will become acquainted with the approaches adopted in different conditions through decisions on frame composition, selected angle of view, and their combination with motion or lack thereof. Concurrently, lessons will also delve into issues regarding the results of the aforementioned preferences, in addition to the aesthetics of use of perspective and high or low depth of field. Finally, the evolution in the design and applications of film cameras from the period of (negative) film to modern digital sensors will be analyzed.

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- understand the basic principles of photography,
- process static images,
- identify the various film camera technologies,
- understand the properties and technical characteristics of film and photographic lenses,
- understand the basic principles of frame composition and its relation to shooting angles and camera movements,
- understand the rules of visual storytelling and approaches to a variety of narratives.

L.C.M. Subjects covered:

- Basic principles of static photography
- Processing of static image files
- Film camera technology and lens properties
- Photography direction
- The rules of visual storytelling

L.C.M. Prerequisites None.

Teaching Method: Distance learning and in-person through the use of new technologies and Group Counseling Meetings (G.C.M.).

Laboratory Installations: Halls owned or rented by the H.O.U.

SKI32: Screenplay III: Short film screenplays

C.M. Code: SKI32

Academic Credits (ECTS) 7.5 C.M. Type: Mandatory

C.M. Specification: Skill Development (SD)

Semester available: Third (3rd)
Teaching language: Greek

C.M. Objective - Description:

The C.M. "Screenplay III: Short film screenplays" discusses the particularities of micronarratives, as regards structure, character development, subject matter, narrative storytelling "arcs", and how each of these is shaped by the brief available narrative time and the challenges of turning a screenplay into a film.

Additionally, lessons will focus on the genre's dramaturgical similarities and differences with the short story and the one-act play, as well as on the nature of the stories most suited and the techniques required to develop the storytelling core of a short film script.

The C.M. also discusses alternative/experimental models of film development.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Recognize the means by which limiting the available narrative time and the regularity required by a film's construction shape a screenplay as a whole
- Understand and implement the various structural models of short films.
- Understand the fundamentals of experimental narratives in short films.
- Write a short film script.

C.M. Subjects covered:

- Character development
- Micro-narratives
- Screenplay structure

C.M. Prerequisites: Successful completion of SKI21

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI33: Direction III: Directing narrative scenes and creating drama

L.C.M. Code: SKI33

Academic Credits (ECTS) 7.5 L.C.M. Type: Mandatory

L.C.M. Specification: Skill Development (SD)

Semester available: First (1st)
Teaching language: Greek
L.C.M. Objective - Description:

The L.C.M. "Direction III: Directing narrative scenes and creating drama" examines the fundamental principles and methodologies of directing, dramaturgy, and actor preparation. Lessons will focus on the particular narrative techniques of dramatic actions and turning points.

The L.C.M. will also include an introduction to the history of Acting - The great writers and systems (Stanislavsky-Meyerhold-Grotowski-Lee Strasberg-Maisner-Adler etc).

Finally, students will have the opportunity to apply the knowledge they will have gained in a workshop environment, constructing various narrative vignettes.

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- Understand the role and place of the director, having been introduced to the fundamental principles of preparation, performing, and direction of dialog scenes.
- Be familiarized with the creation of dialog scenes with actors.

- Understand a textual analysis relating to how a scene is directed.
- Be familiarized with the camera as a point of view in dialog scenes.
- Create 4 brief dialog scenes.

L.C.M. Subjects covered:

- Directing approach to micro-dramatic analysis, with goals and activities.
- Rehearsal techniques before shooting.
- Actor blocking and staging techniques and concepts.
- Methods of covering dialog scenes through the use of film cameras.
- Dialog editing techniques.
- Practical staging, filming, and scene processing techniques.

L.C.M. Prerequisites Successful completion of SKI22

Teaching Method: In-person and distance learning, through the use of new technologies, Group Counseling Meetings (G.C.M.) and in-person workshops

Laboratory Installations: Municipality of Drama

SKI40: Screenplay IV: Cinematic genre screenplays

C.M. Code: SKI40

Academic Credits (ECTS) 7.5

C.M. Type: Mandatory

C.M. Specification: Skill Development (SD)

Semester available: Fourth (4th)

Teaching language: Greek **C.M. Objective - Description:**

The C.M. "Screenplay IV: Cinematic genre screenplays" discusses both the theoretical approaches and the applied narrative screenplay conventions in a variety of genres (crime, comedy, horror, noir, science fiction, etc.). Lessons will discuss each of the aforementioned cinematic genres, examining plot conventions, character composition, types of conflict and subject matter, various creators' interpretations of the aforementioned conventions, as well as "crossovers" between the genres seen in recent years.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Recognize and apply the conventions mandated by and different interpretations suitable for each genre.
- Combine elements from different cinematic genres, by utilizing the differences between them and developing an intertextual dialog.
- Create a short film script in accordance with the conventions of a genre or genres they select.

C.M. Subjects covered:

- Cinematic genres
- Intertextuality
- Narrative conventions

C.M. Prerequisites: Successful completion of SKI32

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI41: Direction IV: From page to Screen. Sequences that form a narrative arc.

L.C.M. Code: SKI41

Academic Credits (ECTS) 7.5 L.C.M. Type: Mandatory

L.C.M. Specification: Skill Development (SD)

Semester available: Fourth (4th)

Teaching language: Greek **L.C.M. Objective - Description:**

The central focus of the L.C.M. "Direction IV: From page to Screen. Sequences that form a narrative arc" is the direction of narrative sequences and the creation of a succession of visual images. Once again, students will obtain practical experience in the theory of dramatic analysis, techniques and camera uses, and audio-visual editing through workshop activities. The L.C.M. examines:

- Characters and Roles
- Analysis
- Plot Skeletons
- Back Story
- Subtext
- Internal flow
- External movement
- Direction
- Scene study
- Direction and interaction with other roles
- Decision-making
- Internal cohesion
- Scene connection.

The workshop environment will offer students the opportunity to develop and direct their own narrative plot, by utilizing the skills and knowledge they have obtained thus far.

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- apply Directing principles, through an in-depth overview of the various stages of production.
- develop and create the appropriate aesthetic for a film.
- develop production plans from a cinematic and directorial standpoint.
- present production design and spatial use.
- create a short film according to their own expression and personal vision.

L.C.M. Subjects covered:

- Directorial approach to Macro-dramatic analysis, through comprehension of the character's arc and the appropriate directorial approach.
- Narrative use of film space and production space.
- Audio-visual cinematic moment creation methods.

L.C.M. Prerequisites Successful completion of SKI33

Teaching Method: In-person and distance learning, through the use of new technologies, Group Counseling Meetings (G.C.M.) and in-person workshops

Laboratory Installations: Municipality of Drama

SKI42: Editing II: Audio and video editing. Aesthetic parameters, dialog, and practical applications

L.C.M. Code: SKI42

Academic Credits (ECTS) 7.5 L.C.M. Type: Mandatory

L.C.M. Specification: Skill Development (SD)

Semester available: Fourth (4th)
Teaching language: Greek

L.C.M. Objective - Description:

The L.C.M. discusses the following audio and visual editing topics:

- Aesthetic parameters (spatial / temporal continuity or discontinuity, elliptical editing, rhythm)
- dialogs & practical application.
- Basic editing principles, concurrently with an examination of the history of editing.
- The "discovery" of continuity editing during the silent film era and its crucial contribution to the evolution of cinematic narrative.
- The case of Griffith and the editing theories of the great Soviet filmmakers of the 1920s
 (Eisenstein, Pudovkin, Kuleshov, Dziga Vertov).
- Critical analysis of scenes.

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- understand the history of film editing,
- understand the basic theories that developed regarding film editing,
- understand the functions of various different film editing techniques,
- develop their critical thinking on the function of film editing,
- obtain the terminology to effectively and critically discuss film editing,
- edit scenes and audio-visual sequences.

L.C.M. Subjects covered:

- Historical evolution of editing
- Basic theories of editing
- Aesthetics of editing
- Editing technology

L.C.M. Prerequisites Successful completion of SKI23

Teaching Method: Distance learning and Group Counseling Meetings (G.C.M.)

SKI43: History of Cinema IV: Nouvelle vague, avant-garde cinema, and broader forms of transcending reality

C.M. Code: SKI43

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: General Knowledge (GK)

Semester available: Fourth (4th)

Teaching language: Greek **C.M. Objective - Description:**

The course module aims to familiarize students with the artistic production of various different currents and filmmakers, as well as with the contribution of their influence to the development of cinematic language. More particularly, the C.M. focuses on the transcendence of the real by the exponents of nouvelle vague and surrealism in its various manifestations, as well as on alternative narratives and broader avant-garde trends and approaches to cinematic language. Currents and figures that students will have already encountered in the C.M.s SKI10 and SKI20, the subject matter of which the present C.M. continues, will be discussed in further detail.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Understand the vital contribution of Nouvelle Vague and its numerous exponents, the
 crucial historical and aesthetic significance of the Cahiers du Cinéma and the La Politique
 des Auteurs, their influence and subsequent critiques of them, as a conversation directly
 connected to the contemporary relation between artists and financial actors (a
 noteworthy example is streaming media) and individuality/collectivity.
- Understand the importance of expressionism, surrealism, and other currents as historical phenomena on the one hand and living trends on the other.
- Know the historical development of avant-garde cinema and become acquainted with rare works necessary for their subsequent theoretical and practical development.
- Obtain a more spherical (academic and practical) perspective of the ability of film to depict reality as well as to *transcend* it as a language and means of expression.

C.M. Subjects covered:

- Nouvelle vague
- Film currents (Expressionism, Surrealism, poetic cinema) and creators
- Avant-garde cinema and narrative forms
- Approaches to transcendence of the real

C.M. Prerequisites: Successful completion of SKI30

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI44: Film Theory II: Cinema and Psychoanalysis. Dreams as a mechanism and their relation with film writing and experience

C.M. Code: SKI44

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: General Knowledge (GK)

Semester available: Fourth (4th)

Teaching language: Greek **C.M. Objective - Description:**

The present C.M. examines how cinema interacts with psychoanalysis, with particular emphasis on dreams. Lessons will focus on concepts of psychoanalysis that have been utilized in film studies, particularly: (a) the dream mechanism and (b) the experience of the dreamer. On the one hand, there is a structural similarity between dreams as mechanisms and film language: in means of expression, ways of producing meaning, and narrative construction. On the other, we have the position of the subjective viewer, and how it is shaped by the film and

its viewing condition. The primary references will be to Freud's "dream mechanism", Lacan's theory of identification, and the film theorists Christian Metz and Thierry Kuntzel. Students are encouraged to become acquainted with the psychoanalytic film theories and their applications in understanding the function of cinema and film analysis.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Understand the basic psychoanalytic concepts and their applications in cinema.
- Recognize the structural similarities between the dream mechanism and film language,
 and the capabilities of cinematic expression.
- Recognize the similarities and differences between the experience of dreams and film viewing, as well as their ideological implications.
- Utilize concepts of psychoanalysis to interpret films (of all genres, story, and documentation, narrative or non-narrative) on first viewing.

C.M. Subjects covered:

- basic concepts of psychoanalysis
- basic psychoanalytic approaches to cinema
- film analysis

C.M. Prerequisites: Successful completion of SKI11

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI45: Animation I: Film graphic design and basic principles of animation

C.M. Code: SKI45

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: Skill Development (SD)

Semester available: Fourth (4th)

Teaching language: Greek **C.M. Objective - Description:**

The present unit offers students the opportunity, through weekly evaluation activities, to understand the basic theoretical elements of the art of animation as a film genre, elements necessary for their further education and practical experience on specialized issues of animation in following semesters. Lessons will focus on topics of film graphic design, such as motion typography and motion graphics, with the examination of basic principles of movement and visual communication, necessary for the subsequent specialized creation of animation.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Utilize the appropriate terminology to critically discuss topics related to the qualitative aspects of animation
- Understand the significance and position of elements of visual communication in the form and structure of an animated film.
- Compare and analyze animated films according to aesthetic criteria and qualitative visual communication characteristics.

 Prepare scholarly papers by employing critical thinking and utilizing the relevant literature, through structured, systematic study.

C.M. Subjects covered:

- Directing approaches to animation
- Screenplays for animation
- Film graphic design
- Visual communication
- Basic principles of animation

C.M. Prerequisites: None.

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI50: Direction V: Documentary, experimental film, "avant-garde", and non-linear film direction

L.C.M. Code: SKI50

Academic Credits (ECTS) 7.5

L.C.M. Type: Elective

L.C.M. Specification: Skill Development (SD)

Semester available: Fifth (5th)
Teaching language: Greek
L.C.M. Objective - Description:

The L.C.M. seeks to familiarize students with aspects of experimental film structure, "avant-garde" or non-linear storytelling, and all forms of documentary, as well as their practices and implementation, through workshop assignments and the creation micro films and short video works. The L.C.M. "Direction V: Documentary, experimental film, "avant-garde" and non-linear film direction" will provide students the opportunity to apply the elements and theories they have been taught to create their own film.

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- recognize and interpret the genres of non-linear cinema and documentary.
- identify and define Video-Art, Avant-Garde, and experimental works, as well as the practices associated with their filming.
- understand the use of audio and visual narration and experiment with them.
- apply Documentary techniques to the film-making process.
- understand the process of researching and utilizing archival videos and material.
- create experimental projects,
- utilize editing & sound design techniques and experiment with them

L.C.M. Subjects covered:

- Experimental, Avant-Garde, and Video-Art techniques and practices.
- Research and utilization of archival footage.

L.C.M. Prerequisites Successful completion of SKI41

Teaching Method: In-person and distance learning, through the use of new technologies, Group Counseling Meetings (G.C.M.) and in-person workshops

Laboratory Installations: Municipality of Drama

SKI51: Photography direction II: Frame composition - camera movement - color

L.C.M. Code: SKI51

Academic Credits (ECTS) 7.5

L.C.M. Type: Elective

L.C.M. Specification: Skill Development (SD)

Semester available: Fifth (5th)
Teaching language: Greek
L.C.M. Objective - Description:

The L.C.M. seeks to familiarize students with issues of and approaches to lighting in combination with various different shooting conditions, through the various choices that arise through different frame compositions and camera movements. Additionally, lessons will discuss the creative use of color and its dramaturgical applications, through assignments with various types of lighting fixtures and the interpretation of different narrative possibilities and temporal conditions (daytime/night-time light).

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- know the different types of lighting fixtures,
- creatively utilize lenses in order to define different versions of frame compositions,
- identify different lighting conditions,
- create frames together with camera motions,
- adjust lighting to achieve a particular aesthetic result.

L.C.M. Subjects covered:

- Introduction to issues of lighting in film
- Technology and evolution of lighting fixtures
- Lighting techniques and the use of color
- Filming techniques with various different lighting fixtures
- Lighting strategies through the use of cameras
- Photography direction

L.C.M. Prerequisites Successful completion of SKI31

Teaching Method: Distance learning and in-person through the use of new technologies and Group Counseling Meetings (G.C.M.)

Laboratory Installations: Halls owned or rented by the H.O.U.

SKI52: Sound and sound design

L.C.M. Code: SKI52

Academic Credits (ECTS) 7.5

L.C.M. Type: Elective

L.C.M. Specification: Skill Development (SD)

Semester available: Fifth (5th)
Teaching language: Greek
L.C.M. Objective - Description:

This L.C.M. discusses the fundamental principles and methodologies of dialog composition, environmental sounds, and music. Lessons will focus on intra-narrative and extra-narrative sounds and their dynamic within the screenplay.

Finally, students will have the opportunity to apply the knowledge they will have gained in a workshop environment, constructing various narrative vignettes.

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- recognize the basic elements of audio narrative
- possess fundamental sound processing practical skills.
- create short films and micro-films (less than 5 minutes) utilizing their own, personal cinematic "voice", as well as through experimentation with various different aesthetic cinematic preferences.
- understand film language and describe a subject through the use of dialog, environmental sounds, and music.
- apply experimental techniques through assignments and projects.

L.C.M. Subjects covered:

- Basic principles and techniques of audio narrative
- Film language and theories of sound continuity.
- Research methods and finding archival audio and effects.
- Experimentation on completed film projects.
- Basic principles of sound and sound design applications.
- Theories of sound space and their implications for the creation of a cinematic geography.

L.C.M. Prerequisites None.

Teaching Method: Distance learning and Group Counseling Meetings (G.C.M.)

SKI53: Screenplay V: Adapted screenplays

C.M. Code: SKI53

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: Skill Development (SD)

Semester available: Fifth (5th)
Teaching language: Greek
C.M. Objective - Description:

The C.M. "Screenplay V: Adapted screenplays" discusses both the theoretical approaches and the practical techniques used in adapting prose and theatrical works, true stories, comics, pre-existing films (remakes), poems, etc.

Lessons will focus on the basic narrative conventions, methodology, and techniques through which these conventions translate into the context of this particular process.

Over the course of the semester, lessons discuss each narrative system, comparatively examine original texts and the screenplays based on them, and analyze various aspects of adaptation (e.g. finding the basic narrative in the adapted work, character selection, treatment of the subject, etc.).

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Identify the various adaptation methodologies
- Understand the different narrative preferences that are appropriate for the process of adapting every narrative system and apply techniques depending on the text being adapted: novel, play, real event.

Adapt a short text.

C.M. Subjects covered:

- Narrative conventions
- Adaptations
- Transformative actions

C.M. Prerequisites: Successful completion of SKI40

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform,

and Group Counseling Meetings (G.C.M.).

SKI54: Animation II: CGI - 3D design, animation, rendering

C.M. Code: SKI54

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: Skill Development (SD)

Semester available: Fifth (5th)
Teaching language: Greek
C.M. Objective - Description:

This C.M. is a direct continuation of SKI45, and focuses on the same syllabus, discussing the qualitative characteristics of animation, albeit with a focus on theoretical and practical training in specialized aspects of 3D computer modeling and CGI (Computer-Generated Imagery).

The C.M. aims to provide students with in-depth knowledge and practical experience in specialized issues of 3D environmental modeling, such as:

- Creating and composing 3D objects on a computer
- 3D object and environmental lighting
- 3D composition framing
- Camera movements in 3D environments
- Finalization and rendering of 3D compositions on 2D images (rendering)

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Understand the primary aspects of the theoretical discussion regarding the fundamental concepts, specializations, and qualitative characteristics of 3D modeling
- Compare and analyze 3D creations utilizing the appropriate terminology and according to aesthetic criteria
- Develop general 3D modeling skills relating to all stages and specializations of the creative process
- Develop specialized skills and select a particular specialization in a collaborative 3D production project.
- prepare scholarly papers by employing critical thinking and utilizing the relevant literature, through structured, systematic study.

C.M. Subjects covered:

- 3D computer modeling
- Photography direction lighting
- Digital Set Design
- Graphic design

Visual communication

C.M. Prerequisites: Successful completion of SKI45

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform,

and Group Counseling Meetings (G.C.M.).

SKI55: History of Cinema V: Italian neorealism

C.M. Code: SKI55

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: General Knowledge (GK)

Semester available: Fifth (5th)
Teaching language: Greek
C.M. Objective - Description:

The course module discusses Italian neorealism as a distinct cultural, historical, and aesthetic phenomenon. Lessons will also focus on the influence it exerted on the various film currents and schools (such as, for example, New Hollywood in the 1970s). The theoretical references of the unit will focus primarily on the perspective of the philosopher Antonio Gramsci. Lessons will also focus on the complex relationship between Italian neorealism and certain key figures (Pier Paolo Pasolini, Federico Fellini, Luchino Visconti) who, despite not fully embracing the current in their artistic oeuvre, were nevertheless connected with its manifestos and aesthetic explorations, in order for students to understand its status as a complex phenomenon with various different iterations, and not a completely homogeneous or strictly defined current.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Know the political, social, aesthetic, and historical dimensions of Italian neorealism.
- Understand the influence of Italian neorealism on international cinema and modern film-making, even within the studio system, through the influence of New Hollywood and the return to the idea of the real through multiple forms of storytelling.
- Identify the connections between discussions on social matters and mythology in its most traditional forms.
- Become acquainted with valuable alternative models of cinematic interpretation and narration.
- Understand the influence of social context on a narrative, the dependence of the art of cinema on extra-textual factors (political, historical, and cultural), as well as their inclusion into the narrative.

C.M. Subjects covered:

- Introduction to Italian neorealism. Aesthetic, dramatic, political, and cultural implications
- Comparative analysis with subsequent currents- New Hollywood, American independent cinema (influences and reactions)
- Italian Auteurs
- Forms of Italian popular cinema (Commedia a l' Italiana, melodrama, peplum, Gothic films). Commonalities, aesthetic influences, and differentiations from the neorealistic perception

C.M. Prerequisites: Successful completion of SKI30

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI56: Film Theory III: Self-referentiality, intertextuality, defamiliarization, estrangement

C.M. Code: SKI56

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: General Knowledge (GK)

Semester available: Fifth (5th)
Teaching language: Greek
C.M. Objective - Description:

The present C.M. discusses the historical shift that gave rise to an emphasis on realism (or naturalism) in film language, to reflection (self-referentiality) and intertextuality, from film to text, and from representation to construction. Lessons will focus on the concepts of identification, its questioning and rejection, the concepts of (cinematic) writing and expression.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- discern the concepts of self-referentiality, encapsulation, and the various forms of intertextuality.
- evaluate the efficacy of its use in film writing and style.
- recognize the functional and historical role of the concepts and practices of film identification and defamiliarization (distancing, disidentification), in managing film language

C.M. Subjects covered:

- Intertextuality and hypertext
- Encapsulation forms and techniques (metafiction etc.)
- Nature and politics of reflection

C.M. Prerequisites: Successful completion of SKI11

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI57: Cinema and Anthropology

C.M. Code: SKI57

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: General Knowledge (GK)

Semester available: Fifth (5th)
Teaching language: Greek
C.M. Objective - Description:

The present course module discusses the fundamental principles of anthropological cinema and aspects of visual culture and ethnographic depictions through the use of audio-visual means. The unit will examine how the technologies of these means have been utilized up to the present day, as well as the relevant modern theoretical discussions, offering students an in-depth look at the history of the ethnographic documentary and the theory of

anthropological and sociological cinema, or the fields of visual anthropology and visual sociology correspondingly, as they are known today.

It may be a coincidence, but cinema appeared at roughly the same time as the discipline of the social sciences we know as social anthropology, a field which comes part and parcel with *in-situ* research, participatory observation, and the so-called "ethnographic documentary". Social anthropology and cinema both appeared in the late 19th century; while the Lumière brothers attempted to document the everyday life and "reality" they saw around them, social anthropologists were making efforts to document their experiences studying communities and tribes, peoples and their customs, and their relation with nature, thus introducing a novel approach to the humanities and audio-visual means while concurrently offering a new and powerful connection between subjects and researchers.

The term "ethnographic documentary" has for many years been intrinsically connected with the field of social anthropology, a connection that has given rise to a number of misconceptions regarding the term. Modern-day anthropology, as well as the entirety of the humanities and the social sciences, reject the stereotypical exoticism of the past and include audio-visual means in their research, proposing new and different ways of thinking about the world around us and researching a constantly shifting otherness.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- recognize the basic elements of visual storytelling through anthropology and the humanities in general.
- recognize film language and its relation with anthropology, sociology, and the social sciences and humanities in general.
- understand the term ethnographic documentary or ethnographic film.
- understand, identify, interpret, and compare the morphological characteristics of:
 Cinéma Vérité and Direct Cinema.
- understand the terms Observational Cinema, Indigenous Cinema, Participatory Cinema, and Sensory Cinema.
- understand and identify the documentary aspect in relation to the terms "diaspora" and "memory".
- understand and identify the discussion regarding the fluid boundaries between fiction and documentary in the context of ethnographic film.

C.M. Subjects covered:

- Visual Anthropology and Visual Sociology
- Modern Ethnographic Film
- In-situ Anthropological Research and the Use of Audio-Visual Means
- Indigenous Cinema
- Observational Cinema
- Sensory Cinema

C.M. Prerequisites: None.

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI60: Direction VI: Film acting - actor direction

L.C.M. Code: SKI60

Academic Credits (ECTS) 7.5

L.C.M. Type: Elective

L.C.M. Specification: Skill Development (SD)

Semester available: Sixth (6th)
Teaching language: Greek
L.C.M. Objective - Description:

The L.C.M. "Direction VI" aims to teach students topics regarding:

- Film acting
- actor direction (building a film role acting methods, kinesiology, collaboration with actors during rehearsals & while shooting).
- the study of Realism in Theater (Ibsen- Chekhov, Pinter, etc.),
- the influence of Cinema on Acting and Modern acting Methods.
- Genres as related to acting (Comedy, Horror, Drama, Satire, Historical films etc.)

Lessons will also focus on:

- Listening
- Effective and Cold reading
- Concentration and Improvisation
- Emotional control
- Scene preparation and stage setting
- Rehearsal goals and scene setting
- Cohesion and continuity
- How to 'move' a scene according to our own demands and the needs of each project
- How to 'move' actors' souls and bodies in space Streams of Action
- The role of helpers or coaches
- Shooting (shooting objectives)
- Rehearsals during shooting (Preferences Challenges)
- Special cases (Children Extras Crowd movements)

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- Apply the stages of a rehearsal to a film project.
- Understand and run through all the stages in the development of a film role.
- Develop and read a screenplay breakdown and organize shooting schedules.
- Understand the goal in each rehearsal in order to prepare a scene

L.C.M. Subjects covered:

- Actor instruction
- Rehearsal planning
- Scene analysis
- Actor direction

L.C.M. Prerequisites Successful completion of SKI41

Teaching Method: In-person and distance learning, through the use of new technologies, Group Counseling Meetings (G.C.M.) and in-person workshops

Laboratory Installations: Municipality of Drama

SKI61: Screenplay VI: Television screenplays

C.M. Code: SKI61

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: Skill Development (SD)

Semester available: Sixth (6th)
Teaching language: Greek
C.M. Objective - Description:

The C.M. "Screenplay VI: Television screenplays" discusses the particularities of the television serial format, as regards structure, character development, subject matter, narrative storytelling "arcs", and how each of these is shaped in relation to the duration of a macronarrative.

Lessons will also focus on the content of the various genres of television series (crime, comedy, drama) as well as their duration (mini-series, TV series, sitcom, procedural, arc -TV, etc.), and discuss particular narrative issues (narratives with multiple plot-lines and protagonists, shifts in narrative focus, disruptions of the narrative axis (flashback/flashforward) etc.)

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Recognize the means through which more available narrative time influences all aspects of a screenplay: structure, characters, plot, etc.
- Understand the means of developing the various television genres and the conventions dictated by each.
- Write a screenplay for a "pilot" episode from a wider screenplay.
- Write a screenplay with multiple plot-lines.

C.M. Subjects covered:

- Episode organization
- Pilot episode creation
- Concurrent plot-line narration
- Narrative arcs
- TV show bible

C.M. Prerequisites: Successful completion of SKI40

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI62: Photography direction III: Complex conditions - filters - advanced natural and artificial lighting conditions

L.C.M. Code: SKI62

Academic Credits (ECTS) 7.5

L.C.M. Type: Elective

L.C.M. Specification: Skill Development (SD)

Semester available: Sixth (6th)
Teaching language: Greek
L.C.M. Objective - Description:

Examination of more complex shooting conditions: lessons focus on the use of lens filters and lighting fixtures. In-depth examination of issues of measuring light and the use of various different types of light meters (incident-reflected-spot), as well as colorimeters, together with applications and results in a given film's aesthetic depending on the values created. Additionally, lessons will analyze and apply various different lighting condition and probability techniques (directional-diffuse-reflective), in relation to corresponding original filming preferences.

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- handle various different types of lighting fixtures and their components,
- use light and color intensity measurement systems,
- understand light and color measurement units,
- apply lighting techniques to complex filming conditions,
- understand the aesthetic differences between night and day shots,
- understand the parameters and appropriate settings for internal and external shots,
- learn special film lighting techniques.

L.C.M. Subjects covered:

- Photometry
- Chromatometry
- Use of filters on lenses and lighting fixtures
- Film lighting techniques
- Photography direction

L.C.M. Prerequisites Successful completion of SKI51

Teaching Method: Distance learning and in-person through the use of new technologies and Group Counseling Meetings (G.C.M.)

Laboratory Installations: Halls owned or rented by the H.O.U.

SKI63: Scenography - costume design

C.M. Code: SKI63

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: Skill Development (SD)

Semester available: Sixth (6th)
Teaching language: Greek
C.M. Objective - Description:

The C.M. Aims to provide students with the knowledge required to contribute to a film project's narrative quality through scenery, costumes, and other embellishments. Lessons will cover the basic tools used in preparing a scenery and costume proposal, as well as the relation between film narratives and the natural and man-made environment.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- understand how to design a film set,
- recognize different means of depicting space and clothing,
- understand the workflow of a scenery/costume proposal,
- develop a scenery/costume proposal based on a screenplay,

- understand the role of scenography/costume design in film productions,
- recognize the artistic significance of materials in a film set,
- understand the relation between architecture and film through viewing and critiquing films.

C.M. Subjects covered:

- Scenography
- Film and architecture
- Film and nature
- Costume design
- History of costume design
- Art history

C.M. Prerequisites: Successful completion of SKI31

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI64: Editing III: Editing as a defining aspect of style

L.C.M. Code: SKI64

Academic Credits (ECTS) 7.5

L.C.M. Type: Elective

L.C.M. Specification: Skill Development (SD)

Semester available: Sixth (6th)
Teaching language: Greek
L.C.M. Objective - Description:

The L.C.M. "Editing III: Editing as a defining aspect of style" provides students the opportunity to learn the fundamental principles of the art of audio and visual editing. Lessons will focus on aesthetic and practical applications and the post-production workflow. Particular emphasis will be placed on the fundamental building blocks of Visual Story Telling with audio. Lessons will also discuss theories of the image as a film language and the combination of film audio with images.

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- recognize the basic elements of visual story telling.
- possess basic practical knowledge of image editing and processing
- create short films and micro-films (less than 5 minutes) utilizing their own, personal cinematic "voice", as well as through experimentation with various different aesthetic cinematic preferences.
- understand film language and describe a subject through the use of audio and visual editing.
- apply experimental techniques through assignments and projects.
- Understand a textual analysis relating to how a scene is directed.
- Be familiarized with the camera as a point of view in dialog scenes.
- Create 4 brief dialog scenes.

L.C.M. Subjects covered:

- Visual Story Telling
- Film language and theories of visual continuity.

- Introduction to semiotics image as language.
- The consequences of visual composition.
- Editing principles.
- Research methods and finding archival footage.

L.C.M. Prerequisites Successful completion of SKI42

Teaching Method: Distance learning and Group Counseling Meetings (G.C.M.)

SKI65: Production I: Stages in the production of audio-visual projects

C.M. Code: SKI65

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: Theoretical (T)
Semester available: Sixth (6th)
Teaching language: Greek
C.M. Objective - Description:

The present C.M. discusses the planning and implementation of the various stages in the creative production of an audio-visual project, as well as in the technical and financial system required to support this creative activity. Lessons will focus on topics such as casting, recruitment of various different specialists, production financial, material- and immaterial-resource (teams, tools, equipment, software) management, as well as legal processes and aspects (royalties, contracts). The methods and techniques of organizing and creating an audio-visual project will be discussed in detail. The C.M. has a combined approach, with theoretical lessons and student assignments and activities, which provide different means of completing a production with the best possible results within the programmed financial, technical, and artistic constraints.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Understand the multi-faceted nature of a production, which in addition to the basic creative department, needs to have appropriate technical/administrative, financial, and legal aid.
- Negotiate the hiring of high-quality talent at the international level (casting, recruitment)
- Create/organize co-production infrastructure
- Carry out projects with a view to international distribution
- Develop critical thinking and select the most suitable method to manage a production
- Understand production processes and models in order to better select those most suited to each individual project
- Understand the cost of decision-making as regards time, funds, and quality of an audiovisual project

C.M. Subjects covered:

- Theoretical approach to planning of all the stages in every genre of audio-visual project
- Preparation of an audio-visual project through practical application of the theoretical approach
- Human resource management, recruitment, casting
- Management of financial resources: budget setting and monitoring
- Production models, types (from the business sector)

C.M. Prerequisites: None.

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform,

and Group Counseling Meetings (G.C.M.).

SKI66: History of Cinema VI: Films as historical documents and the director's perspective

C.M. Code: SKI66

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: General Knowledge (GK)

Semester available: Sixth (6th)
Teaching language: Greek
C.M. Objective - Description:

The present C.M. discusses the multi-faceted relationship between history and film, the approaches to historical documentation through film, and the limits of aesthetic transformation of history and impartial documentation of external aspects of reality. Lessons will focus in part on the methodological and theoretical approaches of the historians who study film as a vehicle for historical narratives, as a propaganda tool, or as a preserver of collective memory. Students will be introduced to the historical, political, and ideological aspects of film as well as its social role in particular circumstances, and discuss issues of 'faithfulness' plausibility', censorship, realism, historical allegories and interpretations. Individual lessons will discuss fictional films and documentaries and their directors, with examples drawn from genres of popular international cinema as well as art film.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Understand the role of film in the development and creation of historical narratives.
- Present, analyze, and refute the documentary nature of fictional films, documentaries, and archival material.
- Approach the works of important directors and their aesthetic preferences in light of their historical circumstances
- Compile, process, and combine information regarding the historical and socio-political context of a film in order to demonstrate its historical significance
- Understand, identify, and examine the ideological assertions of a film
- Clearly express their views and understand possible contradictions or points that require attention in their works, whether as directors, screenwriters, or producers in a film production
- Place modern or earlier films in the current political debate and identify potential censorship limitations or prohibitions

C.M. Subjects covered:

- Theoretical approaches to the relation between history and film
- Basic principles of historical narrative and historical memory
- Analysis of the works of important filmmakers from a historical perspective
- Discussion of social and cultural depictions through examples in film
- Study of examples of the most important events in history as viewed through film narratives

C.M. Prerequisites: Successful completion of SKI30

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI67: Film Theory IV: Semiotics of cinema. Theories of film text analysis and their evolution

C.M. Code: SKI67

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: General Knowledge (GK)

Semester available: Sixth (6th)
Teaching language: Greek
C.M. Objective - Description:

The present C.M. discusses film language, grammar, syntax and punctuation, as well as the transition from semiotic to structural analysis and narratology. Lessons will focus on concepts such as cinematic time, point of view, focus, and types of narrator, as related to cognitive theories and interpretive parameters.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- evaluate the perceptual "constraints" imposed by the depiction of time in film
- discern the three levels of narrative time and evaluate the added "challenges" posed by film time and cinematic perspective
- evaluate parameters such as film rhythm and editing
- analyze a film as regards its spatial-temporal relations
- distinguish between personal and impersonal mood, between the "I" and "them" of film narrative
- discern the degrees of narrative representation and provided information
- prioritize and classify criteria such as narrative mood, distance, and point of view

C.M. Subjects covered:

- Space, time and causality
- Chronological narrative, duration, and repetition effects
- Point of view and focus
- Characters and narrators
- Expression and unreliability

C.M. Prerequisites: Successful completion of SKI11

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI68: Animation III: Digital kinesiology - basic principles and techniques of animation - advanced rendering techniques

C.M. Code: SKI68

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: Skill Development (SD)

Semester available: Sixth (6th)
Teaching language: Greek
C.M. Objective - Description:

This C.M. is a direct continuation of SKI54, and focuses on the same syllabus, discussing the qualitative characteristics of animation, albeit with a focus on theoretical and practical training in specialized aspects of 3D animation and qualitative characteristics of computer animation. The C.M. aims to provide students with in-depth knowledge and practical experience in specialized issues of 3D animation, such as:

- Creating and composing animations on a computer
- Armature and driver creation
- Connection of armature to 3D mesh points
- Armature animation with two Kinematics methods (FK and IK)
- Application of basic principles of animation in 3D models
- Finalization and rendering of 3D animations on 2D images (rendering)

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Understand the primary aspects of the theoretical discussion regarding the fundamental concepts, specializations, and qualitative characteristics of 3D motion
- Compare and analyze 3D motion sequences (3D animation) utilizing the appropriate terminology and according to aesthetic criteria
- Develop general 3D animation skills relating to all stages and specializations of the creative process
- Develop specialized skills and select a particular specialization in a collaborative 3D production project.
- prepare scholarly papers by employing critical thinking and utilizing the relevant literature, through structured, systematic study.

C.M. Subjects covered:

- 3D character modeling
- Creating animation on a computer
- Armature creation
- Animation directing

C.M. Prerequisites: Successful completion of SKI54

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI70: Screenplay VII: Feature-length film screenplays

C.M. Code: SKI70

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: Skill Development (SD)

Semester available: Seventh (7th)

Teaching language: Greek **C.M. Objective - Description:**

The C.M. "Screenplay VII: Feature-length film screenplays" discusses the stages in the creation of a feature-length film screenplay (synopsis, outline, treatment, scripts, first draft). Over the course of the C.M., students will be encouraged to develop their own feature-length film script, in addition to indicative scenes from their screenplay. Lessons will also focus on the process of rewriting, script editing, and script presentation techniques (pitching).

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Run through the stages in the writing of a feature-length film
- Critically assess and edit their colleagues' texts
- Understand how to present their screenplays.
- Write a screenplay script, which students may then utilize as the basis for a film project in their 8th semester.

C.M. Subjects covered:

- Synopsis, outline, script, rewriting, script editing, pitching.

C.M. Prerequisites: Successful completion of SKI32

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI71: Direction VII: Cinema and Music, structural similarities

L.C.M. Code: SKI71

Academic Credits (ECTS) 7.5

L.C.M. Type: Elective

L.C.M. Specification: Skill Development (SD)

Semester available: Seventh (7th)

Teaching language: Greek **L.C.M. Objective - Description:**

The L.C.M. examines the structural similarities between film and music as well as their relation, and soundtrack writing.

Students will complete assignments by preparing their preferred type of film project through their own narrative language. This workshop will offer students the opportunity to prepare an 8th-semester film project, a piece of video-art, an experimental film, a documentary, an animated film, a music video etc. in order to provide them with the necessary skills to direct and produce their own film project in the final semester.

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- Apply the stages of pre-production to a film project.
- Understand and run through all the stages in the development of a film project.
- Prepare a useful, professional production book.
- Develop and read a screenplay Breakdown and organize shooting schedules.
- Understand the narrative, aesthetic, and technical uses of soundtracks.
- Complete preparations for their own film project.

L.C.M. Subjects covered:

- Pre-production and production preparations.
- Casting practices and location scouting.
- Production books.
- Methods of breaking down a screenplay
- Technical and practical utilization of pieces of music.

L.C.M. Prerequisites Successful completion of SKI41

Teaching Method: In-person and distance learning, through the use of new technologies, Group Counseling Meetings (G.C.M.) and in-person workshops

Laboratory Installations: Municipality of Drama

SKI72: Editing IV: Post-production and special effects

L.C.M. Code: SKI72

Academic Credits (ECTS) 7.5

L.C.M. Type: Elective

L.C.M. Specification: Skill Development (SD)

Semester available: Seventh (7th)

Teaching language: Greek **L.C.M. Objective - Description:**

The present L.C.M. is taught through workshops, and offers students the opportunity to familiarize themselves with the techniques, practices, and methods of editing a narrative film through creative cooperation in post-production. Lessons will discuss films in depth, as well as the practices of color grading and sound design. Students will be encouraged to apply the methodologies they have been taught in the creation of short narratives (vignettes) and audiovisual assignments.

L.C.M. Learning Outcomes:

Upon successful completion of the L.C.M., students will be able to:

- create short narrative conditions through the use of editing, color grading, and sound design.
- create short films as part of a creative group.
- define a film perspective.
- identify the narrative functions of a scene.
- identify the skills and techniques demanded by color grading and sound design

L.C.M. Subjects covered:

- Experimentation on completed film projects.
- Sound design applications
- Theories of visual space and their implications for the creation of a cinematic geography.
- Experimental applications of basic visual narrative principles in film projects.
- Visual continuity applications
- Visual narrative applications in film projects.

L.C.M. Prerequisites Successful completion of SKI64

Teaching Method: Distance learning and Group Counseling Meetings (G.C.M.)

SKI73: Short-form film cultures

C.M. Code: SKI73

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: Skill Development (SD)

Semester available: Seventh (7th)

Teaching language: Greek **C.M. Objective - Description:**

Discussion of the particular narrative and structural characteristics of short-form films. The present unit discusses the qualitative characteristics involved in the creation of short-form audio-visual works, such as commercials, opening credits, etc. Lessons will focus on issues of

visual communication and specialized creative fields utilizing digital means, in order for students to obtain an in-depth understanding of the qualitative parameters of short-form audio-visual works. Particular emphasis will be placed on the creation of original audio-visual works concurrently with the morphological and narrative analysis of prominent existing examples.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Utilize the appropriate terminology to critically discuss topics related to the qualitative aspects of short-form audio-visual projects
- Identify the application of visual communication elements in the form and structure of a short-form film.
- Create short-form audio-visual projects, basing their preferences according to their relevant theoretical training
- Write an illustrated script for a short-form project
- Understand issues related to film graphics

C.M. Subjects covered:

- Digital narratives
- Moving print
- Illustrated screenplay -animation
- Animated graphics

C.M. Prerequisites: None.

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI74: Animation IV: Advanced 3D animation techniques

C.M. Code: SKI74

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: Skill Development (SD)

Semester available: Seventh (7th)

Teaching language: Greek **C.M. Objective - Description:**

A direct continuation of SKI68, the present C.M. focuses on the same syllabus, discussing specialized aspects of animation, with emphasis on theoretical and practical training in modern and specialized digital 3D animation tools. The C.M. aims to provide students with indepth knowledge and practical experience in specialized techniques and tools used in 3D animation, such as:

- Creating animation through motion-capture technology: Magnetic and optical methods.
- Connection of armatures to live action video points (Tracking Animation)
- Animation with Natural interactions and automation on a computer

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Compare and analyze specialized animation creation tools and methods based on technical and aesthetic criteria.
- Develop specialized 3D animation skills through the use of modern technology.

- Incorporate specialized animation creation tools and methods in a 3D animation work plan
- Document in academic papers techniques and creative preferences, through structured, systematic study.

C.M. Subjects covered:

- Motion Capture
- Tracking Animation
- Rotoscope Animation
- Creating 3D animation on a computer
- Armature creation
- Animation directing

C.M. Prerequisites: Successful completion of SKI68

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI75: Production II: Development of audio-visual projects - pitching - audio-visual production business planning

C.M. Code: SKI75

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: Skill Development (SD)

Semester available: Seventh (7th)

Teaching language: Greek **C.M. Objective - Description:**

The present C.M. focuses on the development of audio-visual material for use in pitching. It discusses business plans for the production of audio-visual material to obtain slate funding. Lessons will focus on topics such as marketing and entrepreneurship/management. Students will become acquainted with methods of securing funding, promoting and distributing audio-visual works, as well as the commercial utilization of elements within a film (merchandising). The C.M. Also focuses on the financial viability and independence of a given audio-visual work.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Organize, prepare, and present a production portfolio to secure international funding (pitching)
- Prepare a comprehensive proposal/planning text to submit to funding programs run by national and international bodies for the development of their own audio-visual project.
- Commercially utilize the opportunity to produce secondary products (merchandising)
- Utilize the appropriate techniques of a successful business model to promote their audiovisual work (franchising)
- Utilize their marketing skills to achieve both their artistic and their business/commercial goals
- Employ income strategies for their audio-visual project

C.M. Subjects covered:

Marketing of Creative Arts

- Planning, organization, and presentation of a Bible/audio-visual project package for funding (pitching techniques)
- Secondary product production plan (merchandising)
- Franchise practices for audio-visual products (sequels, formats, serials)
- Text planning/preparing of comprehensive proposals for submission of applications for funding the development of an audio-visual project.
- Audio-visual project income strategies

C.M. Prerequisites: Successful completion of SKI65

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI76: History of Cinema VII: From "Golfo" to the "Greek Weird Wave". The history of Greek cinema

C.M. Code: SKI76

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: General Knowledge (GK)

Semester available: Seventh (7th)

Teaching language: Greek **C.M. Objective - Description:**

The TU. Aims to discuss watershed moments in the history of Greek cinema, from "Golfo" (1914), the pastoral drama that was the first feature-length Greek silent film, to the *Greek Weird Wave*, a series of films from the second decade of the 21st century the common stylistic features -detachment, minimalist dialog, evocative photography direction- of which have inspired certain film critics to name them a movement, albeit not without a degree of controversy.

In addition to discussing the subject matter, style, and film language of Greek cinema as it evolved over time, the C.M. aims to provide an overview of the socio-political conditions that co-influenced the production model of films in Greece.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- identify the basic periods and currents of Greek cinema
- evaluate the influence prominent Greek filmmakers had in the development of the Greek film language
- understand and discern the influence exerted by movements such as the Nouvelle Vague on important Greek films
- understand the influence and role of film critics and international film festivals for the recognition of a national cinema

C.M. Subjects covered:

- The appearance of cinema in Greece
- New Greek Cinema
- Greek Weird Wave

C.M. Prerequisites: Successful completion of SKI30

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI77: Film Theory V: The impact of digital technology and information technology on the creation, reception, and dissemination of audio-visual messages.

C.M. Code: SKI77

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: General Knowledge (GK)

Semester available: Seventh (7th)

Teaching language: Greek **C.M. Objective - Description:**

The present C.M. Discusses innovation in cinema and other audio-visual means, as viewed through the dialectical relationship between creative and technological experimentation. Lessons will discuss how the medium -as both materiality and communication channel- at the levels of both production and dissemination of the audio-visual message, interacts with possibilities and codes of expression. The focus will be on historical moments in which practices expanded and re-iterated what audio-visual language means: historic cinematic advances, neo-pioneers and the emergence of expanded cinema and video art, recent developments spurred by digitization, the Internet, digital mobile phones, etc. Students are encouraged to learn about the incredible wealth of opportunities provided to audio-visual expression, while also discussing theoretical issues such as whether and how technological advances influence audio-visual language and understanding of the world around us. Lessons will focus, among other topics, on heterogeneity, the value of documentation, virtuality, and interactivity. The C.M. adheres mainly to a semiotic methodology, embellished with philosophical concepts from the Frankfurt School to post-structuralism and new media theories, as well as with the manifestos and practices of artists from surrealism to digital art.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Understand the fundamental principles of communication theory and recognize them in the audio-visual texts they see.
- Possess a general outline of the history of the audio-visual medium as related to technological developments.
- Obtain an initial contact with the wealth of opportunities provided by audio-visual means.
- Critically and creatively utilize audio-visual technologies.

C.M. Subjects covered:

- Basic principles of communication theory and film semiotics
- The audio-visual language and its relation to current technology
- Theoretical approaches to the relation between art and technology
- Theoretical approaches of avant-garde and experimental film, audio-visual arts and video art, digital and Internet art
- Analysis of audio-visual texts from various genres, from feature films and digital environments to televised news and video games

C.M. Prerequisites: None.

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI78: New narrative approaches to audio-visual storytelling

C.M. Code: SKI78

Academic Credits (ECTS) 7.5

C.M. Type: Elective

C.M. Specification: Skill Development (SD)

Semester available: Seventh (7th)

Teaching language: Greek **C.M. Objective - Description:**

The C.M. aims to introduce students to new augmented cinematic storytelling technologies through the use of various technological tools. Lessons will discuss augmented, non-linear, technologically driven narratives, as well as the tools used for generative narrative compositions and visualizing compositions through augmented and virtual reality technologies.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- know the basic principles of non-linear narrative creation,
- utilize software to create non-linear narratives,
- understand the technological characteristics of augmented reality
- understand the technological characteristics of virtual reality,
- apply generative narrative techniques and visualize the results,
- understand the differences between linear and non-linear narratives,
- create a narrative work with multiple endings/branches.

C.M. Subjects covered:

- Audio-visual composition
- Generative narrative
- Non-linear storytelling
- Augmented storytelling
- Augmented reality
- Virtual reality

C.M. Prerequisites: Successful completion of SKI11

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI80: Research in cinematic narratives

C.M. Code: SKI80

Academic Credits (ECTS) 30 C.M. Type: Mandatory elective

C.M. Specification: Skill Development (SD)

Semester available: Eighth (8th)
Teaching language: Greek
C.M. Objective - Description:

SKI80 involves the preparation of a theoretical assignment through which students will be required to solve at both the theoretical and the applied level one or more challenges concerning the Theory of Cinematography. SKI80 thus provides students the opportunity to

systematize and utilize the knowledge they have obtained over their four terms of study in the USP in SKI ("Studies in Film writing, practice, and research").

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- provide an answer to a complex theoretical question by identifying the basic knowledge and theoretical implications required for its analysis,
- describe the successive stages required to analyze/solve a question, by identifying and adopting internationally accepted theories and combining knowledge and skills from various related fields,
- implement, evaluate, and improve the development of the question,
- adopt and implement a structured methodology in order to develop/solve comparable questions,
- display responsibility in the development of theoretical communication skills,
- prepare a comprehensive assignment in which they will analyze the initial theoretical question, their methodology, and the results of their work,
- defend their assignment publicly, by answering questions posed regarding their personal research.

C.M. Subjects covered:

- Preparation of the structure of a theoretical question
- Detailed planning of the theoretical question
- Research and theoretical documentation in film
- Theoretical research and synthesis in questions involving different fields

C.M. Prerequisites: All the C.M./L.C.M. belonging to previous semesters.

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

SKI81: Cinematic project creation

C.M. Code: SKI81

Academic Credits (ECTS) 30 C.M. Type: Mandatory elective

C.M. Specification: Research Field (R.F.)

Semester available: Eighth (8th)
Teaching language: Greek

C.M. Objective - Description:

Practical application and theoretical documentation regarding a student's creative project. Students may submit one of the following:

- I) Completed film project.
- II) Completed documentary.
- III) Completed Animation project.
- IV) Completed screenplay for a feature-length film.

Choices I, II, and III may have a maximum duration of 45 minutes, while students may specialize independently in one of the following fields:

- Screenplay
- Direction
- Photography direction

- Editing
- Animation
- Production development

Students who select Direction, Animation, and Production - development may also include auxiliary specializations in the creation of their film (music, sound design, graphic design etc.), involving extracurricular collaborators.

In all cases, the resultant works must be uploaded to the H.O.U. repository as student projects, and will possess all the rights according to the regulations of the Institution and academic practice.

C.M. Learning Outcomes:

Upon successful completion of the C.M., students will be able to:

- Identify opportunities to apply the theoretical knowledge they have obtained through participation in C.M. in the creative process.
- Plan research processes in their field of expertise in accordance with academic criteria
- Successfully and professionally prepare practical work plans in their field
- Document their creative preferences
- Collaborate as coordinators of group projects

C.M. Subjects covered:

- Cinematic Storytelling
- Planning, organization, and execution of a film production
- Cinematic project pre-production
- Cinematic project post-production

C.M. Prerequisites: All the C.M./L.C.M. belonging to previous semesters.

Teaching Method: Distance learning through the use of the H.O.U. Remote Learning Platform, and Group Counseling Meetings (G.C.M.).

Postgraduate Courses

Graphic Arts-Multimedia (MA)

Description

The aim of the course is to provide specialized knowledge in field of Graphic Arts and Multimedia Technology.

The course harmoniously combines knowledge: a) in the field of visual communication and visual arts, communication design and creative design for print and digital media b) in the wider scientific and technological fields of graphic arts, publishing, printing, typography and packaging, and c) in the area of multimedia application design, interaction design and interface design.

The course offers students the opportunity to cultivate their creativity and acquire knowledge and skills in creative design for both printed and digital media. More specifically it aims to develop skills and knowledge in the administrative, managerial, technological and production processes of graphic arts, publishing, printing, design and production of packaging, as well as in multimedia design and the development of interactive applications and interfaces for digital

media. During their studies, students develop critical-interpretative skills as well as analytical-synthetic skills, thus obtaining an interdisciplinary approach to problem solving. They are therefore able to cooperate within interdisciplinary workgroups, fully understanding the processes and skills involved in the area of design for multimedia and graphic arts.

Graduates of the Master's program, depending on their experience and expertise, can work in the following areas:

A) Creative design, graphic design and communication design

Creative design and visual communication design for print and digital media. Artistic Design Editing for digital or printed media (art direction). Graphic design and typography. Graphical Interface design, User Experience design.

B) Engineering Graphic Arts Technology

Highly Skilled Administrative positions in pre-press and printing, Editing of design publications and production of printed publications, administration and management systems of printed publications, MIS, JDF, JMF, Printalk systems, Cross-media publishing Technologies, Premedia Technologies, budgeting, Quality control, Application of the ISO-12647 quality process, Organization and production planning, Management, Marketing, Sales (as representaives for machinery and equipment), graphic arts Network management, Colour management, management of CIELAB CIELCH color spaces, measurement, certification, and identification of color differences, ink mix for package printing and special color mixing, Digital files management for pre-press, Technical Security, use of specialized graphic arts software, packaging total design, Custom packaging prepress.

C) Technologies for multimedia design

Design and development of web, multimedia and interactive applications. Design of Human Computer Interaction. Development of specific application types.

The Graphic Arts Multimedia Master of Arts course can be provisionally taught in English.

Admission Requirements

The Post-Graduate Programme accepts applicants holding an academic higher education degree in a related subject, or of other subjects, provided that they also submit a formal Declaration of the candidate stating: "I hereby declare that I possess the necessary level of knowledge of the subjects covered in the Study Programme...... and I am able to meet its requirements."

The programme is offered in Greek.

The knowledge of a foreign language and good computer-Internet skills would be useful for the successful participation in the programme.

Note:

Holders of a degree or diploma of higher education means graduates of Greek Universities or Polytechnics or Higher School of Fine Arts or Higher School of Pedagogical and Technological Education or Higher Technological Educational Institutions (ATEI) or those who hold academically equivalent first cycle degrees from recognized foreign educational institutions with the degrees awarded by the Greek Higher Educational Institutions, in accordance with

the provisions of article 304 of Law No. 4957/2022 (Government Gazette 141/21.07.2022, vol.)

Marking:

For the evaluation of the application to the Postgraduate Studies Programme, it will be examined whether the candidate's institution of study is or may be included in the National Register of Recognised Higher Education Institutions of Foreign Countries and whether the candidate's degree is or may be included in the National Register of Types of Degrees of Recognised Institutions of Foreign Countries.

The Hellenic Open University, if the degree is included in the list of article 307 of Law No. 4957/2022, must request a "Certificate of Place of Study", which is issued and sent by the foreign university. If the place of study or part of the studies is confirmed as the Greek territory, the degree is not recognized, unless the part of the studies that took place in the Greek territory is in a public higher education institution or in a recognized foreign educational institution within the meaning of paragraph b) of article 299 of Law No. 4957/2022.

Minimum study duration

2 academic years

ECTS credit points

120

Classification according to ISCED-2011 of UNESCO

- Based on the level of Education: 7
- Based on the field of Education: 21 Arts

Classification according to ISCED-2013 of UNESCO

- Based on the fields of Education:

0288 (Inter-disciplinary programmes and qualifications involving arts and humanities) Fields:

0114 – Teacher training with subject specialization

0210 Arts, not further defined

0211 – Audio-visual techniques and media production

0212 Design of Industrial Products

0213 Fine arts

0213 Painting (art)

0213 Sculpture

0219 - History of the Art, Communication, Design, Printing, Multimedia not elsewhere classified

0220: Humanities (except languages), not further defined

0232: Literature and linguistics

0611 Computer use

0612 Computer media applications

0613 Computer programming

0619 Information and Communication Technologies not elsewhere classified

0688 Information and Communication Technologies (ICTs), inter-disciplinary programmes 0788 Engineering, manufacturing and construction, inter-disciplinary programmes

Learning Material

Learning material used is mainly printed textbooks but also audiovisual and electronic learning material. The printed material is especially adapted to meet the needs and standards of distance education.

Chapters clearly state aims and objectives. Key concepts and expected learning outcomes. Self-assessment questions and exercise.

Alternative teaching material. To assist the students to a better understanding of the main teaching material. It utilizes, clarifies and enriches, if necessary, the already existing material.

Contact

Student Records:

Tel.: +30-2610 367315. E-mail: gtp@eap.gr

General Information:

Tel.: +30-2610367805 - 2610367806 - 2610367807 -2610367426. E-mail: info@eap.gr

Course Structure

1st Year	
GTP50 Art and Communication in Graphic Arts	(C ¹ , 30 ECTS)
GTP51 Graphic Design	(C, 30 ECTS)
2nd Year	
GTP60 Graphic Arts Technology	(C, 20 ECTS)
GTP61 Information Technology - Multimedia	(C, 20 ECTS)
GTPDE Postgraduate Diploma Thesis	(C, 20 ECTS)
Note:	

C¹: Compulsory

Guidelines on Module selection

During the first year of studies, if you declare one module you can declare either GTP50 or

In the second year of studies, if you choose one module, you can declare either GTP60 or GTP61.

The presentation of the Postgraduate Diploma Thesis will take place after the successful completion of all the modules of the programme.

In the process of declaring Modules, the Modules of the previous year must be exhausted first and then the declaration of the next year's Modules must begin.

For example, if a postgraduate student has successfully completed one module from the first year and in the next year wishes to select one module, he/she must necessarily select the second module from the first year and one from the next year and so on.

As a reminder, students can declare a total of up to two modules or the Postgraduate Diploma Thesis in parallel with the modules of second year.

In order to complete the programme in two academic years, you must successfully complete in the first year of studies two modules and in the second year the last two modules in parallel with the Postgraduate Diploma Thesis.

It is recommended that you balance your time so that you do not choose more modules than you can handle.

Course Modules

GTP50 Art and Communication in Graphic Arts

Module code: GTP50 ECTS Credit Points: 30 Module Type: Compulsory

Year: 1st

Language: Greek

Module general description: The Course Unit "Art and Communication in graphic arts" aims to provide specialized knowledge in the broader scientific and modern cognitive subject of Graphic Arts Technology and Multimedia. The curriculum harmoniously combines knowledge: a) in the field of arts and visual creation, communication design and creative design for print and electronic media with the help of visual communication, b) in the broader scientific and technological field of graphic arts, publishing, printing, typography and packaging, and with the study of the fields of design of web applications, interactive design systems and interface design. In particular, the Programme of Studies aims to offer students the opportunity to cultivate their creativity and acquire knowledge and skills in the creative design of printed and electronic media, in the administrative, managerial, technological and production processes of graphic arts, publishing, printing, design and production of packaging, as well as in the design and development of multimedia applications and web applications with emphasis on the study of interactive systems and applications.

The Course Unit "Art and Communication in graphic arts" offers comprehensive and up-to-date scientific knowledge in the above fields, so that its graduates are able to support similar applications that often arise in their professional or artistic activity.

Learning Outcomes:

With the successful completion of the course unit the student will be able to:

- Understand the visual language and code as a powerful tool for communication.
- Gain a broader perception of the history of art and understand it's reflection in the contemporary creative process and the role of citation and appropriation in art.
- Gain knowledge of the history theory and practice of visual design as well as the theories
 of Communication and Semiotics of Media and Culture, so that they are able to
 appreciate the role of media in the creative process and its outcomes.
- Analyze, interpret, and recognize the special characteristics concerning the historic and social aspects of the work of art in question.
- Understand through the application of theory the ways that media reflect and shape the societies that produce them.
- Develop visual thinking to recognize the styles and codes, keys and the methods used by the artists and the designers.

 To interpret, evaluate and criticize works of art and design and to develop the tools for their own compositions.

Subjects covered:

Scientific fields of the course unit:

- History of Art-history of graphic arts and of Greek printed material
- Visual communication
- Color-basic principles of visual studies
- Visual perception

Prerequisites: There aren't prerequisites courses.

Evaluation: Students are assigned to submit five (5) written assignments during the academic year. The average grade of the five (5) written assignments, weighted at 40%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (\geq 5) in the final or resit exams.

The grade of the final or the resit exams shall be weighted at 60 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the five (5) assignments and (b) at least three (3) of the five (5) written assignments have been submitted.

GTP51 Graphic design

Module code: GTP51
ECTS Credit Points: 30
Module Type: Compulsory

Year: 1st

Language: Greek

Module general description: This module is specifically designed so that it can be independently attended - without necessarily attending all other modules-, should students choose to do so. Aim of the module is to familiarize students with design elements used in the creation of visual communication material, using both typography and image, as well as to introduce them to a more systematic study of the various application areas of graphic design communication, be it for digital or for print media. Through this module, in addition to learning graphic design history, students will be given the opportunity for a thorough study of handling typographic elements and fonts, photographic elements and graphic design elements, into compositions for purposeful visual communication for digital/interactive media as well as print media (such as books, press, posters, packaging, etc.).

Learning Outcomes:

Upon successful completion of the thematic unit the student:

- will become familiar with the elements used in the creation of two-dimensional visual design – in print or digital form.
- they will become familiar with representative fields and forms of application of graphic design.
- will be able to refer to the evolution of typographic elements and the development of graphic design.
- will be able to make a semantic analysis of a photographic image.

- will be able to carry out design experiments, of an aesthetic nature, with the composition and selection of typographic elements.
- they will also experiment with the composition and selection of photography.
- they will experiment in composing an image with a specific communication objective and message.
- will be able to apply the use of typographic, graphic and photographic elements to visual communication design.
- will be able to design using the basic elements and principles of composition.
- they will be able to apply their creativity and gain skills in visual communication using different media, whether print or digital.
- will be able to judge and evaluate her own and others' designs in relation to their overall aesthetic and communication impact.

Subjects covered:

Cognitive Objects of the Unit:

- Letters and numbers
- Photo
- Graphic design, Creation of printed material
- Design process
- Audiovisual Content, art and technique
- Interaction in Design
- Contemporary trends in design, creators
- Basic design language

Prerequisites: There are no prerequisites for this course.

Evaluation: Students are assigned to submit five (5) written assignments during the academic year. The average grade of the five (5) written assignments, weighted at 40%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (\geq 5) in the final or resit exams. The grade of the final or the resit exams shall be weighted at 60 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the five (5) assignments and (b) at least three (3) of the five (5) written assignments have been submitted.

GTP60 Graphic Arts Technology

Module code: GTP60 ECTS Credit Points: 20 Module Type: Compulsory

Year: 2nd

Language: Greek

Module general description: The Graphic Arts Technology module, focuses on the scientific and technological dimension of the graphic arts. The Graphic Arts sector in its broadest dimension, is developing rapidly, particularly in the field of advanced printing methods and technologies and with an emphasis on the design and production of packaging. The sector is experiencing innovations and developments relating to the development of modern business models, digitalisation and digital transformation, the application of numerous automation and

individual elements of the so-called 4th Industrial Revolution (Industry 4.0) and structural changes due to the implementation of sustainability and circular economy strategies.

In this module, all modern technologies relating to workflow management and quality control, pre-press, colour management and processing, printing and post-printing processes (binding, packaging, box making, special graphic arts operations for the finishing of printed matters and finishing) are examined in detail. In addition, specifications are developed which form standards and guidelines for creative and graphic design, taking into account the fact that the possibilities offered by graphic arts science and technology go beyond the limits of how graphic design ideas can be applied to printing.

For these reasons, the Graphic Arts Technology module is very important even for those students who will not work in the field of print-media management and the print production technologies and is considered to provide quite valuable and up-to-date knowledge upon successful completion.

Learning Outcomes:

Upon successful completion of the thematic unit the student should be able to:

- Identify the characteristics and developments of the graphic arts industry the entire process involved in prepress
- Know the technology of pre-press processing (treatments, editing, proofs, printing plates, etc.)
- Describe and distinguish between printing methods according to the printing machines and the requirements of print production
- Describe the post-printing process and the binding of printed matters
- distinguish the differences between basic principles and concepts relating to the process of reproducing a print
- Identify workflows and the management of print production operations
- Knows the procedures for measuring, determining, comparing and producing colors and inks using chromatic systems
- Produce an artistically bound book
- Evaluates product packaging and its characteristics
- organize and plan a printing production
- Cost estimation of a print production
- Applies methods of standardization and quality control of a print run.

Subjects covered:

- Pre printing
- Printing
- Finishing
- Management of Graphic Arts business

Prerequisites: There are no prerequisites for this course.

Evaluation: Students are assigned to submit five (5) written assignments during the academic year. The average grade of the five (5) written assignments, weighted at 40%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (\geq 5) in the final or resit exams. The grade of the final or the resit exams shall be weighted at 60% for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the five (5) assignments and (b) at least three (3) of the five (5) written assignments have been submitted.

GTP61 Information Technology - Multimedia

Module code: GTP61
ECTS Credit Points: 20
Module Type: Compulsory

Year: 2nd

Language: Greek

Module general description: This unit refers in detail to the most important elements that characterize multimedia and its applications, following all the stages of development of a multimedia application. In particular, a brief introduction to the field of multimedia is attempted, definitions of key concepts are given and the main reasons that led to the creation of multimedia are mentioned. This is followed by a brief reference to the evolution of multimedia and the necessary technological equipment. The types of multimedia are described, the various applications of multimedia are described and the elements necessary for the development of an application are analysed. The organisation of the production of a multimedia application will also be discussed, and audiovisual material and hyperlinks will be discussed.

Learning Outcomes:

Upon completion of the GTP61 unit the student:

- will understand computer-aided design technologies,
- will understand the technology of the individual components that make up a computer, in terms of hardware and software,
- will have developed skills in the design and production of multimedia tools using various application programs
- will have developed pedagogical skills in presenting a topic (mainly multimedia content)
- will have developed creative skills in the composition of a visual arts project.

Subjects covered:

- Computers
- C language multimedia, programs, networks
- Architectural analysis and synthesis with digital media

Prerequisites: There are no prerequisites for this course.

Evaluation: Students are assigned to submit five (5) written assignments during the academic year. The average grade of the five (5) written assignments, weighted at 40%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (≥5) in the final or resit exams.

The grade of the final or the resit exams shall be weighted at 60 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the five (5) assignments and (b) at least three (3) of the five (5) written assignments have been submitted.

GTPDE Postgraduate Diploma Thesis

Module code: GTPDE

ECTS Credit Points: 20

Module Type: Compulsory

Year: 2nd

Language: Greek

Module general description: The Course aims to provide specialized knowledge in the broader scientific and modern cognitive subject of Graphic Arts Technology and Multimedia. The curriculum harmoniously combines knowledge: a) in the field of arts and visual creation, communication design and creative design for print and electronic media with the help of visual communication, b) in the broader scientific and technological field of graphic arts, publishing, printing, typography and packaging, and with the study of the fields of design of web applications, interactive design systems and interface design. In particular, the Programme of Studies aims to offer students the opportunity to cultivate their creativity and acquire knowledge and skills in the creative design of printed and electronic media, in the administrative, managerial, technological and production processes of graphic arts, publishing, printing, design and production of packaging, as well as in the design and development of multimedia applications and web applications with emphasis on the study of interactive systems and applications.

The postgraduate thesis is meant to combine and utilize the knowledge students have acquired over the course of their studies.

Students may propose a topic of their choosing for their Postgraduate Diploma Thesis, taking into account a special list of topics (with detailed descriptions) drafted by the tutors. This list is drafted based on the wider subject matter of the postgraduate studies program. Students must prepare the final topic and description of the Postgraduate Diploma Thesis in collaboration with the counselor

Learning Outcomes:

Upon completion of their Postgraduate Diploma Thesis, students will be able to:

- Carry out original design research work related to the subjects tought, on a wide variety of topics of interest,
- Research, compile, verify, and critically assess information, and effectively organize and present it
- Critically and responsibly utilize both primary and secondary sources

General Regulation for Preparing Graduate Dissertations in PC with an annual Module Correspondence

For more information regarding the Specifications – Useful Material for writing Master's Theses and uploading a Thesis at the H.O.U. Repository, you can go to the Digital Training Area http://study.eap.gr and especially to the Program of Studies section.

Prerequisites: The presentation of the Postgraduate Diploma Thesis takes place after the successful completion of the program's Course Modules.

Lighting Design (MA)

Learning Outcomes

With the completion of the Graduate Program Lighting Design a student is expected to:

Know basic concepts regarding the properties of natural and artificial light.

- Handle the various aspects of light in fields such as architecture, interior design, theater, photography, etc.
- Have adequate knowledge of the ways in which light affects humans.
- Be able to design solutions aiming at the attainment of artistic expressive goals.
- Distinguish the basic principles of radiometry and photometry.
- Be aware of the classification of colors and their mixing methods.
- Discern the types of shadows and their applications in the sciences and the arts.
- Analyze the requirements of a lighting project.
- Calculate the conditions of visual comfort.
- Design integrated technical solutions.
- Calculate the costs of the equipment as well as of its operation and maintenance.
- Conduct research and develop designs at a high level of expertise and artistic sensibility.

Admission Requirements

The Post-Graduate Programme accepts applicants holding an academic higher education degree in a related subject, or of other subjects, provided that they also submit a formal Declaration of the candidate stating: "I hereby declare that I possess the necessary level of knowledge of the subjects covered in the Study Programme....... and I am able to meet its requirements."

The programme is offered in Greek.

The knowledge of a foreign language and good computer-Internet skills would be useful for the successful participation in the programme.

Note:

Holders of a degree or diploma of higher education means graduates of Greek Universities or Polytechnics or Higher School of Fine Arts or Higher School of Pedagogical and Technological Education or Higher Technological Educational Institutions (ATEI) or those who hold academically equivalent first cycle degrees from recognized foreign educational institutions with the degrees awarded by the Greek Higher Educational Institutions, in accordance with the provisions of article 304 of Law No. 4957/2022 (Government Gazette 141/21.07.2022, vol.)

Marking:

For the evaluation of the application to the Postgraduate Studies Programme, it will be examined whether the candidate's institution of study is or may be included in the National Register of Recognised Higher Education Institutions of Foreign Countries and whether the candidate's degree is or may be included in the National Register of Types of Degrees of Recognised Institutions of Foreign Countries.

The Hellenic Open University, if the degree is included in the list of article 307 of Law No. 4957/2022, must request a "Certificate of Place of Study", which is issued and sent by the foreign university. If the place of study or part of the studies is confirmed as the Greek territory, the degree is not recognized, unless the part of the studies that took place in the Greek territory is in a public higher education institution or in a recognized foreign educational institution within the meaning of paragraph b) of article 299 of Law No. 4957/2022.

Minimum study duration

2 academic years

ECTS credit points

120

Classification according to ISCED-2011 of UNESCO

- Based on the level of Education: 7

- Based on the field of Education: 21 Arts

Classification according to ISCED-2013 of UNESCO

Based on the fields of Education:

0288 - Inter-disciplinary programmes and qualifications involving arts and humanities 0788Inter-disciplinary programmes and qualifications involving engineering, manufacturing and construction

Fields:

0211 Audiovisual techniques and media production

0212 Fashion, interior and industrial design

0713 Electricity and energy

0219 Arts not elsewhere classified

0731 Architecture and town planning

0732 Building and civil engineering

0739: Architecture and construction, not elsewhere classified

Learning Material

Learning material used is mainly printed textbooks but also audiovisual and electronic learning material. The printed material is especially adapted to meet the needs and standards of distance education.

Chapters clearly state aims and objectives. Key concepts and expected learning outcomes. Self-assessment questions and exercise.

Alternative teaching material. To assist the students to a better understanding of the main teaching material. It utilizes, clarifies and enriches, if necessary, the already existing material.

Contact

Student Records:

Tel.: +30-2610 367427 E-mail: sfp@eap.gr

General Information:

Tel.: +30-262610367805 - 2610367806 - 2610367807 -2610367426 10 367600 E-mail:

info@eap.gr

Course Structure

1st Year	
SFP50 Art, light and psychology of perception	(C ¹ , 20 ECTS)
SFP51 General Principles of lighting and physiology of visual perception	(C, 20 ECTS)
SFP60 Lighting Technology and connection to production (Specialization I)	(C, 20 ECTS)

SPF1 ETHE (lab) Direction of photography in cinematography: camera, lenses, camera movement, framing/composition, basic lighting techniques	(C, 20 ECTS)
(Specialization II)	
2nd Year	
SFP61 Architectural lighting design and simulation applications	(C, 20 ECTS)
(Specialization I)	
SPF2 ETHE (lab) Direction of photography in cinematography: advanced	(C, 20 ECTS)
techniques in various lighting setups (Specialization II)	
SFPDE Master's Thesis	(C, 40 ECTS)
Note:	
•	

C¹: Compulsory

Guidelines on Module selection

In the first year of studies, the first two (2) modules SFP50 and SFP51 are considered the core of the PMS SFP and are mandatory. Students may then select mandatory elective modules, through which they also select their specialization. By selecting the module SFP60 the "Architectural Lighting" specialization is chosen, while selecting the SFP1 ETHE (lab) the "Cinematography Lighting" specialization is chosen.

Students in the second academic year must select one (1) mandatory elective module depending on the specialization they have chosen in the first academic year (SFP61 for students who have elected to specialize in "Architectural Design" and SFP2 ETHE (lab) for students who have elected to specialize in "Cinematography Lighting"), in addition to preparing their Master's Thesis.

The selection of the modules must begin from either SFP50 or SFP51.

In the specialization A (Architectural Lighting) SFP61 has as prerequisites SFP50 and SFP51.

In the specialization B (Cinematography Lighting) SFP1 ETHE (lab) can be selected simultaneously either with SFP50 or SFP51 or with both of them. SFP2 ETHE (lab) is offered in the second year of studies with a prerequisite of either the simultaneous attendance of SFP1 ETHE (lab) or the completion of SFP1 ETHE (lab).

Students in order to select the Master thesis must have either completed SFP61 or SFP2 ETHE (lab) (depending on their specialization), or attend them both simultaneously.

The presentation of the Master thesis takes place after the successful completion of the 4 modules/ETHE (lab).

In the process of declaring Modules, the Modules/ ETHE (lab) of the previous year must be exhausted first and then the declaration of the next year's Modules/ ETHE (lab) must begin. Students may select modules and combine them as follows:

One at a time (One module per academic year, beginning with either SFP50 or SFP51)

In groups of two (e.g., SFP50 & SFP51, SFP60 & SFP61, Master Thesis).

In combinations of three and two (e.g. first year: SFP50, SFP51, & SFP1 ETHE (lab), second year SFP2 ETHE (lab) & Master Thesis).

Course Modules

SFP50 Art, light and psychology of perception

Module code: SFP50

ECTS Credit Points: 20
Module Type: Compulsory

Year: 1st

Language: Greek

Module general description: This course module has a dual objective. First, it attempts to communicate the basic properties of natural and artificial lighting. Secondly, it aims to collect the synthetic criteria in order to achieve a certain desired expression, through the lighting. These criteria are organized both through the awareness of the lighting effects on the psychology of the visitor or the inhabitant of a space, and through the analysis of artworks. The interpretation of the visual perception, through the historical consideration of light in art and architecture, is the main methodological axis of this thematic unit.

Therefore, the purpose of the unit is to collect the criteria, aesthetic and functional, which are organize the thinking around the space and the objects, as well as to sharpen the perception, so that we can use these criteria in design, with the light as a tool.

Learning Outcomes:

Students will be able to:

- Know the basic concepts regarding the properties of natural and artificial light.
- Understand the different methods and tools of light management available to them.
- Handle the various capabilities of light in fields such as architecture, interior design, theater, photography, etc.
- Understand the psychological properties of light, i.e. how light influences humans in different conditions.
- Know the methods of synthesis to achieve artistic expressional goals in all of the aforementioned fields.
- Understand the basic concepts of photometry, i.e., the methods of measuring and correlating the qualitative and quantitative properties of light

Subjects covered:

- Visual communication
- Basic Principles of visual education and signification
- History of light in art and architecture
- Psychology of visual perception

Prerequisites: There are no prerequisites for this course.

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (\geq 5) in the final or resit exams. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the

The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted.

SFP51 General Principles of lighting and physiology of visual perception

Module code: SFP51 **ECTS Credit Points**: 20

Module Type: Compulsory

Year: 1st

Language: Greek

Module general description: The main objective of the Course Module (C.M.) is for students to get acquainted with the Basic Principles of Light and the Physiology of Visual Perception. The C.M. SFP 51 consists of six thematic sub-units, (1) Principles of photometry – Photometric quantities and units, (2) Visual perception, (3) Nature of color and color perception – Principles of Colorimetry, (4) Natural light basics, sun lighting and shading of buildings, (5) Principles of human centric lighting, (6) Light and shadow, light and space.

Photometry is a key tool for the study of light and lighting design. Students will thoroughly study the principles, the quantities, the instruments and units of light measurements. Furthermore, they will get familiar with the visual system, physiology and the mechanisms of visual perception, they will study color in its physical, psychophysical and colorimetric dimensions, they will look back on the perceptions of light and shadow over time and they will be introduced in architectural lighting design principles and practice.

In addition, they will be using the tools of photometry to approach fundamental considerations in human centric lighting design, exploring lighting solutions that consider lighting quality with reference to human vision and performance on visual tasks, while simultaneously incorporating new insights about the non visual effects of light.

They will learn to deal with light as a means of composition or expression of meaning or aesthetics or creating an atmosphere addressed to the emotion (in psychology), drawing on knowledge about the function and mechanisms of visual perception and considering how to use measurements to manage the qualities of light in relation to visual perception.

The ultimate goal is for students to be able to handle the various possibilities of light in fields such as architecture, interior design, theater, cinema, analyze the requirements of a lighting project and calculate visual comfort conditions through the threefold scheme: light, space and human.

Learning Outcomes:

Upon completion of the module, the student will:

- be acquainted with the nature of light and the basic principles of radiometry and photometry, what a black body is and its applications, the radiometric and photometric quantities, units, and the primary measuring devices of photometry.
- understand basic concepts regarding the properties of natural and artificial lighting.
- have sufficient knowledge of the ways in which light affects people and will therefore be familiar with the principles of human-centric lighting.
- have the theoretical background and know how to use solar trajectory diagrams to determine the natural lighting/shading of buildings
- have acquired a basic understanding of physiology, in terms of the characteristics and functional principles of human vision. He/she will have an understanding of the mechanisms of reception and processing of visual information through which perception is accomplished.
- be able to explain the meaning of colour in science, technology, and visual perception.
- Be aware of the classification of colours and the methods of colour mixing.

 have understood how colour perception works and how the visual system perceives colour in relation to the physical characteristics of the colour stimuli in given lighting conditions.

Upon successful completion of SFP51, students will have developed the following skills:

- Experience with radiometric and photometric calculations.
- Ability to handle lighting and shading in architectural plans, lighting of surfaces or objects for artistic or other purposes.
- Ability to assess the quality of lighting in terms of visual performance and colour rendering and to manage the critical characteristics of lighting - natural or artificial - that influence or determine visual perception.

Subjects covered:

- Light and physiology of visual perception
- Photometric and colorimetrie principles
- Photometric units, lighting calculations and evaluation
- Color mixing and color rendition of light sources
- Design and geometrical characteristics of daylighting

Prerequisites: There are no prerequisites for this course.

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (\geq 5) in the final or resit exams. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted.

SFP60 Lighting Technology and connection to production

Module code: SFP60 ECTS Credit Points: 20

Module Type: Compulsory/Specialization I

Year: 1st

Language: Greek

Module general description: This C.M. includes the listed issues

- Technical characteristics of lamps and lighting fixtures
- Luminous and energy efficiency parameters of lighting fixtures
- Photometric diagrams
- Lighting calculation software
- Design of indoor and outdoor lighting systems
- Use of daylight
- Rational use of energy in lighting

This C.M. aims to provide students with the skills they need to tackle a lighting project taking into account both its architecture and available technology combining technique with aesthetics. Students learn to work in an interdisciplinary environment using a range of accounting for lighting analysis acquiring all the skills required to execute and manage lighting

projects. Lighting design is not treated simply as a technical problem but as a process of influencing emotion and perception that offers viewing experiences.

Learning Outcomes:

Upon successful completion of SFP60, students will be able to:

- Evaluate the photometric and energy characteristics of lamps and lighting fixtures
- Analyze the requirements of a lighting project,
- Select the appropriate equipment that meets the requirements of the lighting project
- Propose proper solutions for a lighting project,
- Calculate quantitatively and qualitatively the required conditions of optical comfort
- Make the proper calculations and design a lighting system
- Formulate technically sound and energy-efficient solutions,
- Calculate and exploit the utilization of daylight in indoor installations
- Propose energy saving solutions in existing and new lighting installations
- Design the lighting system to meet the energy requirements of the current legislation
- Select the proper equipment and designate its spatial arrangement,
- Calculate the installation, function, and maintenance costs of lighting installations
- Propose the most beneficial solutions

Subjects covered:

- Lighting techniques, applications and integrated lighting design
- Norm and standards for lighting design
- Energy optimization, cost and benefit for lighting projects
- Visual comfort improvement
- Technology of light sources and lighting controls

Prerequisites: There are no prerequisites for this course.

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (\geq 5) in the final or resit exams. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the

final grade. Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4)

assignments and (b) at least three (3) of the four (4) written assignments have been submitted.

SFP1 ETHE (lab) Direction of photography in cinematography: camera, lenses, camera movement, framing/composition, basic lighting techniques

Module code: SFP1 ETHE (lab)

ECTS Credit Points: 20

Module Type: Compulsory/ Specialization II

Year: 1st

Language: Greek

Module general description: An emphasis is given, in the deeper knowledge required on the use of various systems dealing with the creation of moving images, based on super-35mm digital cinema camera and lenses of both variable and prime focal lengths: as lighting consists of the highest level of competence in the creation of moving images, initially the focus is on

matters dealing with principal cinematography, while eventually as the intensive workshops offered are taking place, the effort is on gaining experience in different lighting conditions, through the shooting of small scenes while at the same time, the participants learn through a hands-on approach, all kinds of lighting units and their respective control-devices, in a purely cinematic creative environment in a studio. At the same time the theoretical long distance courses, will support the essence of the subject module offered, covering all kinds of technical, aesthetic and artistic requirements embedded.

Learning Outcomes:

Through this introductory cinematography module, a truly creative approach arises with research, theoretical, aesthetic, technical and pictorial overtones, that along with the experience and knowledge that will be acquired, will surpass the expertise factor, on the level of all possible practices that can be developed. In audiovisual and cinematic matters at large, Cinematography-Direction of Photography, is a discipline that requires the highest levels of skills in complex combinations and approaches dealing with artistic decisions based in image composition and framing that form the platform for all aesthetic, pictorial and visual statements through lighting in order to support the narrative development: as a consequence the cinematic possibilities in the contemporary digital medium and environment are innumerable. The different digital-content distribution- platforms, are in constant demand of fresh and greater audiovisual product, while "show-business" includes all kinds of artistic possibilities and forms of expression with a common approach and technological substance (live music- shows, theater-performance-cinema-tv- music-videos and video-art), through light, projection, live and digital-image, forming a new environment in constant development, a place of artistic collaboration and creative involvement, that combines with incredible human input on different aesthetic experiences but with a unique goal: the complete artwork. The knowledge and experience that will be gained has many possible disciplines, while at the same time it broadens the horizon of aesthetic and technological approaches of all participants in the courses offered, offering as well new possibilities of professional aspects. More specifically, as far as creative practices and expression in artistic matters are concerned, lighting is the peak of their aesthetic and pictorial visual presence, underlining immense possibilities in productions dealing with architecture, theater, cinema and television, as well any possible visual performance condition.

Subjects covered:

- Imaging equipment for digital cinematography
- Visual narrative techniques
- Lighting approaches to different narrative(s) possibilities
- Visual interpretation of various lighting conditions
- Lighting measurements in correlation to selected focal lengths

Prerequisites: There are no prerequisites for this course.

Evaluation: Students are assigned to submit five (5) distance activities during the academic year. The average grade of the five (5) activities, weighted at 70%, is taken into consideration for the calculation of the final grade. The grade of the distance activities is activated only with a score equal to or above the pass level (≥5) in the second phase (laboratory examination). The grade of the laboratory examination shall be weighted at 30 % for the calculation of the final grade.

Students have the right to participate in the laboratory examination if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the five (5) distance activities and (b) at least four (4) of the five (5) distance activities have been submitted.

Teaching Method: Distance teaching through three four-hour sessions, plus face-to-face during a three-day/eight-hour intensive workshop in a special-studio environment with an emphasis in cinema-lighting.

SFP61 Architectural lighting design and simulation applications

Module code: SFP61 ECTS Credit Points: 20

Module Type: Compulsory/ Specialization I

Year: 2nd

Language: Greek

Module general description: This C.M. includes:

Designing for natural lighting-shading

Lighting design theories

- Effect of lighting on humans

Interior lighting design

- Exterior/building facade lighting design

General lighting plan

- Ways of presenting a lighting design

3D design and photorealism

Lighting simulation

The purpose of this Course Module is to provide students with the skills they need to design the lighting in any interior or exterior space, taking into account the spatial characteristics of this space and the needs of the project. Special mention is made of the methods of representation and presentation of lighting and the way of communicating a study.

Students learn to work in an interdisciplinary environment using a range of software for lighting analysis acquiring all the skills required in a lighting study. With the introduction of two group written assignments and the interdisciplinary background of the students, interdisciplinarity in dealing with a lighting study is ensured, while at the same time the necessary climate of communication between the different specialties is formed.

Learning Outcomes:

Upon successful completion of SFP61, students will be able to:

- Design environmental lighting to achieve the desired character,
- Analyze the layers of lighting of a room,
- Communicate their lighting design ideas,
- Analyze the influence of light on human physiology and psychology,
- Describe how lighting affects human health,
- Create a three-dimensional model and apply digital light sources,
- Categorize light sources according to their qualitative properties,
- Calculate the colors that will occur from the blending of colored lights,
- Understand the differences between the various digital sources of Light,
- Use shadows as part of their lighting design,
- Apply digital materials and textures to 3D models.

Subjects covered:

- Architectural lighting design
- Lighting and color synthesis
- Human factors in lighting
- Architectural analysis and design through digital representation lighting simulation

Prerequisites: SFP50 & SFP51

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (\geq 5) in the final or resit exams. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted.

SFP2 ETHE (lab) Direction of photography in cinematography: advanced techniques in

various lighting setups

Module code: SFP2 ETHE (lab)

ECTS Credit Points: 20

Module Type: Compulsory/ Specialization II

Year: 2nd

Language: Greek
Learning Outcomes:

Throughout the course one can gain knowledge into a truly creative research methodology with theoretical, aesthetic, technical and visual parameters as the experience and knowledge gained contributed to visual storytelling.

Cinematography is a specialization which is developed through composition, movement of the camera and visual creative choices that contribute to the narrative. All advancement in digital technology is truly phenomenal. All streaming platforms require audiovisual content while the entertaining industry involves a number of artistic expressions (concerts, theatrical performances festivals, cinema, television and video art, through lighting, live or digitized image all of which aim at a complete art project. The knowledge gained from all these applications in the program will open all kinds of creative approaches for the students. More precisely this knowledge can be applied to architecture, theater, cinema and television.

After completing the course students will be able to:

- Create an audiovisual narration through lighting through color temperature as a means for visual communication
- Use and control of reflective and ambient light
- Create a number of lighting conditions of directed light
- To recognize the pairs of lighting/composition and angles of shooting in static as well as moving situations

Subjects covered:

- Lighting applications and visual cinematic narrative
- Use of color temperature in various lighting sources

- Diffused and reflected light conditions and lighting control techniques
- Directional lighting conditions
- Correlation between lighting conditions/framing-composition, camera-angles, static and moving lighting

Prerequisites: Either simultaneous attendance of the SFP1 ETHE or successful completion of the SFP1 ETHE.

Evaluation: Students are assigned to submit five (5) distance activities during the academic year. The average grade of the five (5) activities, weighted at 70%, is taken into consideration for the calculation of the final grade. The grade of the distance activities is activated only with a score equal to or above the pass level (≥5) in the second phase (laboratory examination). The grade of the laboratory examination shall be weighted at 30 % for the calculation of the final grade.

Students have the right to participate in the laboratory examination if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the five (5) distance activities and (b) at least four (4) of the five (5) distance activities have been submitted.

Teaching Method: Distance teaching through three four-hour sessions, plus face-to-face during a three-day/eight-hour intensive workshop in a special-studio environment with an emphasis in cinema-lighting.

SFPDE Master's Thesis

Module code: SFPDE

ECTS Credit Points: 40

Module Type: Compulsory

Year: 2nd

Language: Greek

Module general description: The Master's Thesis is meant to combine and utilize the knowledge students have acquired over the course of their studies.

Students may propose a topic of their choosing for their Master's Thesis, taking into account a special list of topics (with detailed descriptions) drafted by the C.M. Coordinators. This list is drafted based on the wider subject matter of the postgraduate studies program, as well as those of the six individual C.M. Students must prepare the final topic and description of the Master's Thesis in collaboration with the counselor.

Indicative topics for research:

- Visual communication
- Basic Principles of Visual Education and Meaning
- Historical Overview of Light in the Arts and in Architecture
- The Psychology of Visual Perception
- Light and Physiology of Visual Perception
- Principles of Photometry and Chromatometry
- Photometric Quantities, Measurements, and Lighting Assessment
- Color Blending and the Color Rendering of Light Sources
- Design and the Geometric Properties of Natural Lighting
- Lighting Techniques, Applications, and the Preparation of comprehensive lighting reports
- Rational Lighting Rules and the Use of Regulations and Standards
- Costs and Benefits of Lighting Project Energy Optimization

- Improvement of optical comfort
- Artificial Light and Lighting Control Technology
- Digital Cinema Equipment
- Visual Narration
 - Lighting Approaches from Different Narrative Perspectives
- Visual Interpretation of Different Lighting Conditions
- Light Measurements and Values vis a vis Conditions of Selected Focal Lengths
- Architectural Lighting Design
- Lighting and Color Synthesis
- Effects of lighting on humans
- Architectural Analysis and Synthesis with Digital Means Lighting Simulation
- Lighting Applications & the Creation of Cinematic Visual Narratives
- Use of Color Temperature of Various Types of Lighting Sources
- Forms of Diffused and Reflected Lighting, with the Corresponding Control Accessories
- Directional Lighting Conditions
- Static- and Moving-Image Lighting/Compositions and Frame/Camera Angle Correspondences

Learning Outcomes:

Upon successful completion of SFPDE, students will be able to:

- Carry out original research on a wide variety of topics of lighting design,
- Research, compile, verify, and critically assess information, and effectively organize and present it
- Adhere to the principles and rules and standards of lighting design
- Effectively and creatively utilize internet/digital tools/media to draft/edit/distribute their texts
- Critically and responsibly utilize both primary and secondary sources

General Regulation for Preparing Graduate Dissertations in PC with an annual Module Correspondence

For more information regarding the Specifications – Useful Material for writing Master's Theses and uploading a Thesis at the H.O.U. Repository, you can go to the Digital Training Area http://study.eap.gr and especially to the Program of Studies section.

Prerequisites: The presentation of the Master's Thesis takes place after the successful completion of the program's Course Modules.

Acoustic Design and Digital Sound (MSc)

Description

The Postgraduate Course "Acoustic Design and Digital Sound" provides an in-depth study of topics relevant to the science of acoustics which are widely employed in theoretical and practical applications in the field of acoustic design, focusing both in the art as well as in the technology of sound.

This Postgraduate Course aims at providing specialist knowledge for scientists

a) to enable them to engage in research and professional activities in the wider area of audio technologies, in sound and in acoustic design for buildings, installations and in noise control,

b) to support related applications often in professional or artistic activities that they already exercise.

Learning Outcomes

On successful completion of the ASP program students will be able to,

- understand the nature of sound, the principles of acoustics and the quantitative units of sound level measurements
- determine the difference between the acoustics and psychoacoustics
- recognize the sequence of steps for music production and the possibilities offered with the use of modern processing and synthesis audio technologies.
- identify the key design principles of an electroacoustic installation
- recognize the difference between the art of sound and music
- evaluate the sound level of a single source in open or enclosed space as well as the level of the combination of many sources emitting simultaneously.
- recognize the instruments with which we measure and analyze the sound
- distinguish the different modes of sound propagation
- be aware of the methods for noise reduction
- know the effects of noise on health.
- describe the basic concepts of sound transmission within enclosed spaces
- distinguish the basic theories of sound propagation within enclosed spaces
- distinguish the difference between the traveling and the standing waves and how the latter affect the sound field of an enclosed space.
- understand importance of reverberation time, how it is related to the function of a space, what is the effect on the acoustic behavior of rooms, and how it can be optimized with the use of sound absorbing materials
- analyze the response of a room in time and frequency domain
- set out the general acoustical principles for room design and the requirements of the most popular enclosed spaces
- manage the information obtained from the acoustic measurements in the evaluation of acoustic quality of a room
- define the requirements and standards in relation to the regulations for noise control using the methods for noise prediction and understand the operation of the related software.
- Derive and evaluate the information from the noise maps
- be able to evaluate the application of design principles in real acoustic studies
- describe the concepts of signals and systems for audio and acoustics applications
- determine the frequency spectrum of a signal and describe the main categories of ideal filters
- recognize the importance of digital coding and compression of audio data
- summarize the types and sources of distortions and noise in audio signals
- describe the purpose and principles of digital equalization of audio systems
- appreciate the structure and operation of a typical software for recording and mixing music
- perform multitrack recordings and mixing on the computer and explain the working principle of the basic digital music effects

- identify specific programming languages for creating audio / interactive applications
- describe the most important digital audio protocols and for transmission and the Internet
- describe the structure of software libraries for audio in smart mobile systems

Admission Requirements

The Post-Graduate Programme accepts applicants holding an academic higher education degree in a related subject, or of other subjects, provided that they also submit a formal Declaration of the candidate stating: "I hereby declare that I possess the necessary level of knowledge of the subjects covered in the Study Programme....... and I am able to meet its requirements."

The programme is offered in Greek.

The knowledge of a foreign language and good computer-Internet skills would be useful for the successful participation in the programme.

Note:

Holders of a degree or diploma of higher education means graduates of Greek Universities or Polytechnics or Higher School of Fine Arts or Higher School of Pedagogical and Technological Education or Higher Technological Educational Institutions (ATEI) or those who hold academically equivalent first cycle degrees from recognized foreign educational institutions with the degrees awarded by the Greek Higher Educational Institutions, in accordance with the provisions of article 304 of Law No. 4957/2022 (Government Gazette 141/21.07.2022, vol.)

Marking:

For the evaluation of the application to the Postgraduate Studies Programme, it will be examined whether the candidate's institution of study is or may be included in the National Register of Recognised Higher Education Institutions of Foreign Countries and whether the candidate's degree is or may be included in the National Register of Types of Degrees of Recognised Institutions of Foreign Countries.

The Hellenic Open University, if the degree is included in the list of article 307 of Law No. 4957/2022, must request a "Certificate of Place of Study", which is issued and sent by the foreign university. If the place of study or part of the studies is confirmed as the Greek territory, the degree is not recognized, unless the part of the studies that took place in the Greek territory is in a public higher education institution or in a recognized foreign educational institution within the meaning of paragraph b) of article 299 of Law No. 4957/2022.

Minimum study duration

The minimum duration of the programme is two (2) years.

ECTS credit points

120

Classification according to ISCED-2011 of UNESCO

Based on the level of Education: 7

- Based on the field of Education: 21 Arts

Classification according to ISCED-2013 of UNESCO

Based on the field of Education: 0788 Inter-disciplinary programmes and qualifications involving engineering, manufacturing and construction

- 0211 Audio-visual techniques and media production
- 0521 Environmental Sciences
- 0619 Information and Communication Technologies not elsewhere classified
- 0712 Environmental protection Technologies
- 0714 Electronics and automation
- 0732 Building and civil engineering

Learning Material

Learning material used is mainly printed textbooks but also audiovisual and electronic learning material. The printed material is especially adapted to meet the needs and standards of distance education.

Chapters clearly state aims and objectives. Key concepts and expected learning outcomes. Self-assessment questions and exercise.

Alternative teaching material. To assist the students to a better understanding of the main teaching material. It utilizes, clarifies and enriches, if necessary, the already existing material.

Contact

Student Records:

Tel.: +30-2610 367342 E-mail: asp@eap.gr

General Information:

Tel.: +30-2610367805 - 2610367806 - 2610367807 -2610367426 E-mail: info@eap.gr

Course Structure

1st Year	
ASP50 Acoustic Design	(C ¹ , 20 ECTS)
ASP51 Sound insulation – sound protection	(C, 20 ECTS)
ASP60 Room Acoustics	(C, 20ECTS)
2nd Year	
ASP61 Digital Sound	(C, 30 ECTS)
ASPDE Postgraduate Diploma Thesis	(C, 30 ECTS)
Note:	
C¹: Compulsory	

Guidelines on Module selection

During the first year of studies, it is recommended that students (if they have sufficient time) choose all three modules ASP50, ASP51 and ASP60. If they choose one module, then this should be ASP50, while if they choose two modules then these should be ASP50 and ASP51. As a reminder, students may choose for full-time study one up to three modules per academic year as long as they do not exceed 60 ECTS per year.

In the second year, if students choose one module, this should be ASP61. In order to choose the module ASP61, students must either have successfully completed ASP60 or select them both simultaneously.

In the process of declaring Modules, the Modules of the previous year must be exhausted first and then the declaration of the next year's Modules must begin.

The preparation of the Postgraduate Diploma Thesis presupposes the successful completion of the modules ASP50, ASP51 and ASP60 of the programme. The presentation of the Postgraduate Diploma Thesis takes place after the successful completion of all the modules. The successful completion of four Modules and the Postgraduate Diploma Thesis is mandatory for the award of the Master's degree.

Course Modules

ASP50 Acoustic Design

Module code: ASP50 ECTS Credit points: 20 Module Type: Compulsory

Year: 1st

Language: Greek

Module general description: The main purpose of this module is to provide knowledge and familiarity with the terms and the physical parameters of Sound and Acoustics, covering both technical and creative aspects related to the design of sound (and audio-visual) projects of artistic expression, including interactive applications and/or sound installations. Students will initially be trained in the basic principles and concepts of Sound and Acoustics, in topics concerning sound recording, processing and synthetic creation/mixing of sound and music, the analysis of sound signals in the time and frequency domains, the organization and execution of (acoustic) experiments for the measurement of perceptual and psycho-acoustic criteria, the design and production of audio (and multimedia) content with an emphasis on the spatial formation of sound (spatial audio), the implementation of acoustic and electro-acoustic studies.

Learning Outcomes: Upon successful completion of this unit, students will be able to:

- Will know the nature of sound and the fundamental principles of the science of acoustics,
 the physical phenomena that take place during the propagation of sound and the
 quantitative measures of sound level on the basis of which calculations are made.
- Will be able to identify the difference between acoustics and psychoacoustics and the objective subjective mechanisms of human hearing.
- Will be able to grasp the qualitative and quantitative concept of the representation of acoustic signals in the time and frequency domain, as well as the concept of the quality of these signals.
- Will be familiar with the stages of music production and the possibilities offered by the use of new sound management and synthesis technologies.
- Will be familiar with the basic principles of designing an electroacoustic installation, taking into account the individual characteristics of the electroacoustic transducers (microphones and loudspeakers) used.
- Will recognize the difference between the art of sound and music
- Will have been taught subjects related to contemporary artistic creations that use sound as a means of creative expression either exclusively or in combination with other art

forms, such as painting, as well as the two-way relationship between acoustics and architecture, from a perceptual and historical perspective.

Will be familiar with individual topics related to virtual acoustics.

Subjects covered:

- Introductory acoustics concepts
- Perception of sound
- Architecture and acoustics
- Electroacoustic installations
- Musical instruments and electronic sound technology
- Sound in space

Prerequisites: There are no prerequisites for this unit.

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (≥5) in the final or resit exams. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the

final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted.

ASP51 Sound insulation – sound protection

Module Code: ASP51 ECTS Credit points: 20 Module Type: Compulsory

Year: 1st

Language: Greek

Module general description: The aim of the course ASP51 is the understanding of the theoretical background and the familiarization with the problems of Sound Protection - Soundproofing in outdoor and indoor areas with cognitive contents:

- the basic physical properties and the method of measuring sounds,
- the addition and subtraction of sound intensities, the standard sound signals
- the concept, the physic properties and the consequences of noise,
- the basic phenomena of sound propagation in walls, closed air-ducts and the open air
- the calculation of the sound insulation capacity in simple and composite panels
- the effect and the evaluation of sound barriers
- the sound protection and sound insulation regulations

Learning Outcomes: Upon successful completion of the course students will be able to:

- understand the basic phenomena, the units of measurement and acoustic quantities of individual sound sources or a combination of sources
- assess noise, to calculate and design the sound insulation in buildings, in closed air ducts and in the open air
- assess the sound insulation and sound absorption capacity of building materials and building structures
- know the effects of noise on humans and the basic legislation on noise

- to carry out sound protection/insulation studies for small/medium scale projects

Subjects covered:

- Basic introductory concepts
- Noise measurement and analysis
- Outdoor noise protection and building sound insulation
- Noise suppression and sound absorbing materials
- Noise maps and indicators, regulations
- Physiology & hearing protection, regulations

Prerequisites: There are no prerequisites for this unit.

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (≥5) in the final or resit exams. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the

final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted.

ASP60 Room Acoustics

Module Code: ASP60 ECTS Credit points: 20 Module Type: Compulsory

Year: 1st

Language: Greek

Module general description: The purpose of this module is to provide the necessary knowledge regarding the understanding of the phenomena and mechanisms of sound propagation in closed spaces, the ways and tools for analyzing the acoustics of these spaces as well as the tools for predicting the acoustic behavior with the aim of optimal acoustic design of a space depending on its intended use and its size. Therefore, the categorization of closed spaces according to the existing literature is studied, the parameters and criteria of acoustic behavior, the mechanisms and materials of sound absorption and the general design principles of closed listening spaces as well as the design requirements for different spaces are examined. The students are trained in the use of equipment and software for measurements and analysis of the acoustic behavior of spaces, in the classical statistical methods of calculating the basic parameters, but also in the use of 2-dimensional design software and in acoustic modeling using 3-dimensional prediction software.

Learning Outcomes: Upon successful completion of this unit, students will be able to:

- describe the basic concepts that determine the propagation of sound in enclosed spaces,
- distinguish the basic theories of sound propagation inside buildings,
- distinguish what a travelling and standing wave is and how it affects the sound field of an enclosed space,
- distinguish what reverberation time is, how it relates to the use of a room, what its effect
 is on the acoustic behaviour of rooms, and how this can be improved by the use of sound
 absorbing materials,

- analyse the response of a space in the time and frequency domain,
- define the general principles of design of enclosed listening rooms and the design requirements for different rooms,
- manage the information obtained from acoustic measurements in the assessment of the acoustics of listening rooms.

Subjects covered:

- Indoor sound propagation and analysis
- Acoustic parameters for measurement and evaluation
- Geometric and wave acoustics
- Sound absorption mechanisms and materials
- Design of lecture halls, concert halls, multi-purpose halls
- Measurement software and acoustic prediction of rooms

Prerequisites: There are no prerequisites for this unit.

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (≥5) in the final or resit exams. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the

final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted.

ASP61 Digital Sound

Module Code: ASP61 ECTS Credit points: 30 Module Type: Compulsory

Year: 2nd

Language: Greek

Module general description: The purpose of this module is to provide knowledge and familiarity, both, in acoustic design using appropriate acoustic simulation software and in the basic concepts of the digital audio technology. Students will initially be trained in the use of acoustic simulation software and the use of noise measurement and evaluation software. They will then be trained in the basic concepts of digital audio technology applied to the sound storage, reproduction, transmission and music data retrieval and identification.

Learning Outcomes: Upon completion of the unit, the student will be able to:

- describe the principles of acoustic simulation used by acoustic design software.
- follow a specific methodology to create a complete acoustic/electroacoustic simulation project.
- identify the standards and norms that apply in relation to noise protection legislation use the basic steps of mapping rooms for noise prediction and understand the operation of sound protection software.
- describe the concept of signal and system for sound and acoustics applications
- identify the frequency spectrum of a signal and describe the basic classes of ideal filters
- recognise the importance of digital coding and compression of audio data

- summarise the types and sources of distortion and noise in audio signals
- briefly describe the purpose and general principles of digital equalisation of sound systems
- identify specialised programming languages for the creation of sound/interactive applications
- describe the most important digital audio transmission protocols on devices and on the Internet
- briefly describe the spatial (3D) sound coding and reproduction methods
- briefly describe the Music Information Retrieval and Audio Identification methods.

Subjects covered:

- Acoustic design and sound protection software applications
- Digital processing and analysis of sound signals
- Digital audio applications
- Response measurement of sound and acoustic systems
- Software for music applications, recording and sound reproduction
- Audio applications on the Internet
- Semantic analysis and retrieval of musical information
- Technologies for 3D sound

Prerequisites: The choice of ASP61 requires the simultaneous choice or completion of ASP60. **Evaluation:** Students are assigned to submit five (5) written assignments during the academic year. The average grade of the five (5) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (\geq 5) in the final or resit exams. The grade of the final or the resit exams shall be weighted at 70% for the calculation of the

The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the five (5) assignments and (b) at least three (3) of the five (5) written assignments have been submitted.

ASPDE Postgraduate Diploma Thesis

Module code: ASPDE
ECTS Credit Points: 30
Module Type: Compulsory

Year: 2nd

Language: Greek

Module general description: The postgraduate diploma thesis PDT provides the opportunity to synthesize and utilize knowledge gained in specific applications as well as skills in using the tools, methods and techniques necessary in audio and acoustic design and management, digital audio processing and multimedia audio analysis.

The general categories of subjects for PDT are determined by the program Director after consultation with the Coordinators of the course modules and are posted on the HOU website, before the start of the period for submission of the relevant statement by the students.

The thematic fields are indicative and are linked to the specialized knowledge areas of the Thematic Units of the ASP postgraduate study program. The subjects proposed by the students may combine dimensions from two or more of these thematic fields.

Examples include:

- Sound design, sound interfaces and soundscapes
- Applications of digital audio processing, analysis and evaluation
- Semantic analysis and categorization / classification of sounds
- Sound protection of outdoor spaces
- Sound insulation of closed spaces
- Acoustic design of closed and open spaces
- Acoustic measurements
- Design of electro-acoustic installations
- Music composition and production

Learning Outcomes:

Upon completion of the unit, the student will be able to:

- Design original research and/or original study and/or project in the subjects of acoustic design and digital sound using a scientific methodological approach.
- Conduct literature research and literature review.
- Search for sources related to the topic of the thesis, in international scientific journals,
 conference proceedings, scientific books, online publications, company websites, etc.
- Record, classify and evaluate research material in order to produce the existing research situation (state-of-the-art) in the topic undertaken.
- Develop and follow a schedule for the implementation of original research, study and/or project.
- Develop algorithms and/or operate specialized software and/or perform on-site acoustic measurements and/or design specialized hardware and/or implement hardware and/or implement software.
- Design and implement an evaluative study (objective and/or subjective) of hardware, software, educational (multimedia) application, audio examples, listening tests, etc.
- Conduct and write a comprehensive master's level academic thesis.

General Regulation for Preparing Graduate Dissertations in PC with an annual Module Correspondence

For more information regarding the Specifications – Useful Material for writing Master's Theses and uploading a Thesis at the H.O.U. Repository, you can go to the Digital Training Area http://study.eap.gr and especially to the Program of Studies section.

Prerequisites: The presentation of the Postgraduate Diploma Thesis takes place after the successful completion of the program's Course Modules.

Protection of Cultural Heritage and Monuments of Nature from the Effects of Climate Change (Joint Degree)

Joint Degree

The distance learning joint degree CCC programme is provided by the **Hellenic Open University** (HOU), Greece in collaboration with the **Academy of Athens.**

Academic Governance

The **Programme Director** is responsible for the proper functioning of the programme.

The CCC Board of Studies, comprised by the Programme Director and the Module Coordinators, monitors the complete educational process of the CCC programme, including administrative support, the formation of the programme evaluation criteria leading to the assurance of high quality in the knowledge and services offered, the formation of student selection criteria and generally deals with the academic issues of the programme.

Module Coordinators are responsible for module specific aspects, i.e. they ensure the smooth operation of the module and the coordination of the activities of Tutors.

Tutors and **Supervisors** are responsible for the tutoring and objective assessment of the students' progress and the improvement and development of educational material.

Programme Scope-Description

The scope of the Master's degree Programme «Protection of Cultural Heritage and Monuments of Nature from the Effects of Climate Change» is the in-depth study of issues related to mitigation and adaptation of the effects of climate change on natural and cultural heritage sites worldwide. Specifically, the learning outcomes on which the Programme focuses are primarily concerned with the sciences of climatology and the environment, geology, telemetry and satellite applications, engineering, architecture, history, archeology, the preservation of works of art and monuments. Interdisciplinary fields such as sociology, culture and environmental economics, as well as information technology, support the Programme majors.

General Information

The knowledge and experience that will result from the combination of theoretical and technological training in this post-graduate Programme is the first in kind as it is highly multidisciplinary. The proposed Programme joins theory and science in order to optimally address the effects of climate change on nature and cultural heritage sites. The use of theoretical knowledge and knowledge from sciences such as Meteorology, Archeology, Physical Chemistry, Sociology, etc. ensure a huge range of interdisciplinarity of this Programme. The originality of the subject not only contributes to the development of science and technology, but also advances in areas of interdisciplinary knowledge application both in the theoretical direction and in the positive sciences. In this MSc, sciences, arts and technology meet in a new interdisciplinary field, which is expected to develop very quickly.

Learning Outcomes

Upon successful completion of the course, students will be:

- able to engage in research in the broader fields of protection and monitoring of the effects of climate change on natural and cultural heritage sites,
- able to practice in the broader fields of protection and monitoring of the effects of climate change on natural and cultural heritage sites,
- have comprehensive scientific knowledge in the areas of protection and monitoring of the effects of climate change on natural and cultural heritage, so as to be able to contribute to mitigation and adaptation of the effects of climate change,

 able to assess the quantitative and qualitative problems that may arise from the observed destabilization of the climate in the monuments of nature and cultural heritage.

Admission Requirements

The following applicants can be accepted:

- 1. Graduates from all departments of domestic universities and recognized HEIs internationally with related subjects. The relevance of the subjects is confirmed after a suggestion of the Academic Supervisory Committee of the Programme and a decision of the Governing Committee of the Hellenic Open University,
- 2. Graduates from Technological Educational Institution departments with related subjects. The relevance of the subjects is confirmed after a suggestion of the Academic Supervisory Committee of the Programme and a decision of the Governing Committee of the Hellenic Open University,
- 3. Graduates of any Department of HEIs, as well as graduates of Technological Educational Institutions may be accepted upon the recommendation of the Academic Supervisory Committee of the Programme and the decision of the Governing Committee of the Hellenic Open University,

English language knowledge at B2 level and knowledge of another language* at C2 level is mandatory.

The programme is offered in English.

*Greek might be the second language.

(see <u>Annex</u>)

Note:

Holders of a degree or diploma of higher education means graduates of Greek Universities or Polytechnics or Higher School of Fine Arts or Higher School of Pedagogical and Technological Education or Higher Technological Educational Institutions (ATEI) or those who hold academically equivalent first cycle degrees from recognized foreign educational institutions with the degrees awarded by the Greek Higher Educational Institutions, in accordance with the provisions of article 304 of Law No. 4957/2022 (Government Gazette 141/21.07.2022, vol.)

Marking:

For the evaluation of the application to the Postgraduate Studies Programme, it will be examined whether the candidate's institution of study is or may be included in the National Register of Recognised Higher Education Institutions of Foreign Countries and whether the candidate's degree is or may be included in the National Register of Types of Degrees of Recognised Institutions of Foreign Countries.

The Hellenic Open University, if the degree is included in the list of article 307 of Law No. 4957/2022, must request a "Certificate of Place of Study", which is issued and sent by the foreign university. If the place of study or part of the studies is confirmed as the Greek territory, the degree is not recognized, unless the part of the studies that took place in the Greek territory is in a public higher education institution or in a recognized foreign educational institution within the meaning of paragraph b) of article 299 of Law No. 4957/2022.

It is clarified that holders of a first degree of Higher Education are accepted in the Postgraduate Program.

Programme Duration

The minimum time required for the completion of the Programme is two (2) academic years.

Programme Language

The official language of the Programme is English. The language in which all material content, written assignments and postgraduate thesis is English.

ECTS credit points

The total sum of ECTS (European Credit Transfer and Accumulation System) required for the completion of the Programme is 120 ECTS.

Classification according to ISCED-2011 of UNESCO

- Based on the level of Education: 7

Classification according to ISCED-2013 of UNESCO

- Based on the fields of Education: 0788 Engineering, manufacturing and construction, interdisciplinary programmes.
- 0214 Handicrafts
- 0222 History and archaeology
- 0288 «Inter-disciplinary programmes and qualifications involving Arts and Humanities»
- 0531 Chemistry (Analytical Chemistry, Inorganic Chemistry, Physical Chemistry)
- 0532 Earth sciences
- 0533 Physics
- 0613 Software and applications development and analysis
- 0712 Environmental protection technology
- 0722 Materials (glass, paper, plastic and wood)
- 0288 «Inter-disciplinary programmes and qualifications involving Arts and Humanities»
- 0731 Architecture and town planning
- 0732 Building and civil engineering

Type of Postgraduate Programme

Master of Science (M.Sc.)

Accepted number of students

45

Study Material

The educational material which consists of study guides and e-books is provided in a digital form. The study material content is available to students through a dedicated online platform or through the HOU Library.

Contact

Student Records:

Tel.: +30-2610 367430 E-mail: ccc@eap.gr

General Information:

Tel.: +30-2610367805 - 2610367806 - 2610367807 -2610367426 E-mail: info@eap.gr

Programme Syllabus

The study Programme is structured in two (2) years. The first year includes three (3) annual course modules that offer basic knowledge on natural and cultural heritage, climatology, environmental hazards and materials science. The second year includes two (2) annual course modules and the elaboration of a Master's Thesis. One course modules of the second year is elective and leads to one of the following directions for adapting and mitigating the effects of climate change:

- A. Moveable Heritage
- B. Monuments and Archaeological Sites
- C. Natural and Historic Heritage Landscapes

The master's degree is awarded upon completion of 5 course modules and the Master's **Thesis**

1 st Year	
CCC50 Cultural and Natural Heritage	(C ¹ , 20 ECTS)
CCC51 Introduction to climate change	(C, 20 ECTS)
CCC52 Material science	(C, 20 ECTS)
2 nd Year	
CCC60 Telematics and metrics	(C, 20 ECTS)
CCC61 Resilience Strategies for Moveable Heritage	(E ² , 20 ECTS)
CCC62 Resilience Strategies for Monuments and Archaeological Sites	(E, 20 ECTS)
CCC63 Resilience Strategies for Natural and Historic Heritage Landscapes	(E, 20 ECTS)
CCCDE Master's Thesis	(C, 20 ECTS)
Note:	

C1: Compulsory E²: Elective

Course Module Selection Instructions

The M.Sc. "Protection of Cultural Heritage and Monuments of Nature from the Effects of Climate Change" is structured in two (2) years, which include four (4) compulsory course modules (CM), three (3) elective course modules that provide the Major, as well as a Master's Thesis. Students may choose one (1) to three (3) course modules each academic year.

The first year includes three (3) annual course modules that offer basic knowledge on natural and cultural heritage, climatology, environmental hazards and materials science (CCC50, CCC51, CCC52), which are required. The choice of the first year course modules is unrestrained and can be selected in any order.

The second year includes two (2) annual course modules, one of which is compulsory (CCC60) and the second elective (from: CCC61, CCC62, CCC63) as well as the elaboration of a Master's Thesis. If one second year course module is selected, CCC60 must be selected. If two course modules of the second year are selected, then CCC60 and one optional course module (CCC61, CCC62, CCC63) should be selected.

The selection of CCC61, CCC62, CCC63 becomes possible after attending the course modules of the first year. The first year course modules should be selected first.

The elaboration of the Master's Thesis takes place after the selection of the second year course modules or simultaneously. The presentation of the Master's Thesis takes place after the successful completion of the required course modules.

The Selection course module of the second year leads to one of the following Majors for adapting and mitigating the effects of climate change:

- A. Moveable Heritage (selection of CCC61)
- B. Monuments and Archaeological Sites (selection of CCC62)
- C. Natural and Historic Heritage Landscapes (selection of CCC63)

For the acquisition of the Master's Degree the successful attendance of the four compulsory course modules and one elective CM as well as the successful completion of the Master's Thesis. The total number of credits (ECTS) required to obtain the Master's Degree is 120 ECTS.

Course Modules

CCC50 Cultural and Natural Heritage

Module code: CCC50 ECTS Credit Points: 20 Module Type: Compulsory

Year: 1st

Language: English

Module general description:

The Course Module «Cultural and Natural Heritage» covers the theoretical aspects of cultural and natural heritage, its protection, preservation and management, as well as international policies and legislation concerning it. It includes an historical review and an overview of the current theoretical framework and practical approaches on the protection, management and interpretation of heritage. Several international case studies and World Heritage Sites are discussed as comprehensive examples.

Its main objectives are to:

- Introduce the basic terminology, principles and approaches of cultural and natural heritage protection and place these within a historical and cultural context.
- Explore the multiplicity of meanings and values attributed to heritage
- Identify and investigate the numerous risks that threaten cultural and natural heritage
- Discuss the international heritage protection process and global strategies
- Identify the main agencies that are responsible for the global response to heritage issues
- Explore and reflect on the legislation, policy documents, international charters and conventions that frame cultural and natural heritage management and conservation.
- Present the technologies and tools used in heritage documentation, protection, management and interpretation.

Learning Outcomes:

After the successful completion of the Course Module students shall be able to identify, critically understand, and reflect on:

- the range of values and meanings associated with heritage, the multiple threats to it and why protecting and preserving it is imperative,
- the basic principles and concepts of cultural and natural heritage protection, preservation, conservation, restoration and management,
- the international heritage protection strategies and the role of legislation and public policy in heritage management, restoration and conservation,
- the methods and tools currently being implemented for the scientific documentation, analysis and presentation of monuments and heritage sites.

Subjects covered:

- Introduction to heritage and heritage protection
- International policies, principles and legislation
- Historical review and theoretical approaches to heritage protection
- Research tools and technological innovation in heritage protection, management and interpretation
- Examples of heritage analysis and environmental issues

Prerequisites: None

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (≥ 5) in the final or resit exams.

The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted.

Teaching Method: Distance learning by conducting Group Counseling Meetings during the academic year on weekends.

CCC51 Introduction to climate change

Module code: CCC51
ECTS Credit Points: 20
Module Type: Compulsory

Year: 1st

Language: English

Module general description:

Acquisition of specialized knowledge by students in matters concerning: a) the earth's climatology, b) the basic climatic parameters and quantities associated with air pollution and their interconnection with climate change, c) extreme climates as a consequence of climate change, d) on the effects of climate change on the various parts of the planetary system (atmosphere, cryosphere, geosphere) and e) on the connection of climate change with sectors of the economy and society. The TU contributes to the understanding of the complex structure and operation of the climate system and its changes throughout the history of the planet as well as to the acquisition of knowledge of the most important processes (e.g. atmospheric and

ocean currents) in different parts of the world that determine key climate indicators (e.g. atmosphere temperature, sea level, etc.). The TU provides knowledge of anthropogenic and natural sources of emissions into the atmosphere resulting in increased concentrations of pollutants that affect the climate. The TU allows students to become familiar with the definition of extreme weather phenomena with adverse effects on materials and structures. Finally, the TU allows students to recognize the technological aspects of climate change and to understand the need for climate change adaptation and mitigation actions.

Learning outcomes:

After the successful completion of the Course Module students shall be able to identify, critically understand, and reflect on:

- Understand the complex structure of the climate system and its changes throughout the Earth's history.
- List the most important processes that determine the main climate indicators.
- Know the basic climate parameters.
- Understand the anthropogenic and natural sources of atmospheric emissions that affect the climate.
- Define the main effects of climate change on Earth.
- Become familiar with the identification of extreme weather events as a consequence of climate change.
- Know the effects of climate change on different human activities.
- Recognize the technological aspects of climate change and the need for adaptation and mitigation actions.

Subjects covered:

- Introduction to climatology
- Major climate and pollution parameter changes
- Extreme events linked to climatic change
- Geological impacts of climate change
- Synergistic phenomena

Prerequisites: None

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (≥ 5) in the final or resit exams.

The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted.

Teaching Method: Distance learning by conducting Group Counseling Meetings during the academic year on weekends.

CCC52 Material science

Module code: CCC52
ECTS Credit Points: 20
Module Type: Compulsory

Year: 1st

Language: English

Module general description:

The main objective of the present module is to introduce the students to materials science with special focus on traditional and Cultural Heritage materials and issues emerging due to climate change.

The key subjects of the module are:

- 1. Material Science
- 2. Diagnostic Technologies for investigating material conditions
- 3. Deterioration of materials
- 4. Investigation of CH sites and entities in view of their preservation

More specifically:

Discipline 1: Introduction to Material Science

The scope of this discipline is to introduce the students into the basic scientific terms of material science. The subjects to be taught involve elementary definitions from, chemistry, crystallography, mechanics of materials - stress-strain relations and strength of materials, and some introductory elements of material pathology.

<u>Discipline 2: Diagnostic technologies for material failure</u>

With this discipline, it is aimed to introduce the student to the state of the art of investigative works for the protection of our cultural heritage. It is also hoped that methodological thinking shall be generated regarding the array of site and laboratory options available and the suitability of them in the conservation undertakings. One important parameter worth mentioning here is that the value of the various methods and techniques is magnified when they are suitably interconnected, feeding other investigative processes, towards the better understanding of the conservation/restoration tasks.

Discipline 3: Material ageing

The third discipline of the Study module contains a brief description of major deterioration factors for monuments as well as a selected study cases of deteriorated monuments along with the relevant novel restoration procedures which are discussed.

Pollutant agents are discussed, along with conservation and restoration procedures.

Along with the presentation of typical deterioration of monumental structures there is also a discussion of suggested methodologies for uprating the structures.

Discipline 4: Archaeometry

The last discipline of the module is dedicated to Geophysical methods adapted to archaeological investigations and monitoring.

The array of most advanced methods are presented. Their origin, developmental pattern pros and cons are discussed, along with suggested interpretation methods of the data collected.

Learning Outcomes:

After the completion of the module, students are expected to:

- familiarize with the principles of interdisciplinary subjects discussed,
- get introduced to the chemical composition of the materials, characterization of materials, typical processing principles,
- understand elementary mechanics and strength of materials
- become acquainted with the most important methods of investigative works,
- understand their primary field of application and their potential efficiency and effectiveness to the task at hand,

- become acquainted to the main nondestructive diagnostic technologies (NDT) used for Cultural Heritage monuments.
- familiarize with the Systematic Degradation Patterns of the Monuments,
- obtain an introductory knowledge gained on conservation treatment procedures where the Non-Destructive Methods are used for Damage mapping,
- be able to recognize the most important geophysical methods used for the investigation and preservation of the Cultural heritage and understand their field of application,
- obtain an introduction to methodological interpretation and assessment of research results in studies of Cultural Heritage

Subjects covered:

- Introduction to material science
- Archaeometry
- Material ageing
- Diagnostic technologies for material failure

Prerequisites: None

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (≥ 5) in the final or resit exams.

The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted.

Teaching Method: Distance learning by conducting Group Counseling Meetings during the academic year on weekends.

CCC60 Telematics and metrics

Module code: CCC60 ECTS Credit Points: 20 Module Type: Compulsory

Year: 2nd

Language: English

Module general description:

This Course Module (TU) deals with topics in the science of telematics offering a comprehensive picture of the wide range of Earth observation applications and relevant metrics to address climate change and other environmental impacts on cultural and natural heritage.

There are the following units:

Unit 1. Ground-based metrics and telematics.

Unit 2. Passive and active remote sensing technologies.

Unit 3. Satellite-based metrics and telematics.

Unit 4. GIS mapping.

The first Unit aims to introduce you to methods of surveying natural and man-made spatial objects. It also aims to understand the use of surveying instruments, the measurement of

lengths, angles, slopes, and polygonal lines, as well as the methods of horizontal surveying and levelling, tachaeometry, the three-dimensional coordination and finally the drawing methods for topographic diagramms.

The second Unit aims to introduce you to remote sensing technologies and their multiple applications. You will be introduced to the basic terms and concepts needed in order to be able to understand the context and the specialised implementation aspects of remote sensing on cultural heritage. The overall aim is to provide an introduction to the theoretical background as well as to practical issues and then focus on selected good practices that underpin the modern and partially still untapped potential of remote sensing in tackling cultural heritage protection.

The third Unit aims to introduce you to the satellite-based metrics and to multiple applications under the general scope of Earth observations. In particular, you will be introduced to data and products derived from the Copernicus program, giving special attention to climate and cultural-related services in order to be able to understand the contribution of remote sensing in protecting cultural heritage from climate change impacts. The overall aim is to provide an introduction to multiple research and application perspectives of the aforementioned services.

The fourth Unit aims to introduce you the basic concepts, theoretical and practical, related to the subject of Geographic Information Systems (GIS). The main goal is to present the fundamental GIS principles and the necessary techniques in order to mapping and create data and then, analyzing, managing and visualizing. Furthermore, the unit will close with multidisciplinary GIS applications and the role of GIS in environmental study, protection and management focusing on the natural environment.

Learning outcomes:

Upon successful completion of the course, students will:

- get acquainted with the basic techniques, methodologies, and metrics of telematics utilized to monitor earth ecosystems, focusing on cultural heritage elements,
- understand the basic principles of remote sensing, including satellite and in-situ platforms, and how they are applied at different scales (i.e., monuments, world heritage cities, sites of natural heritage) in relation to climate change,
- familiarize with GIS mapping and its applications on cultural heritage to assess impacts from climate change and other relevant environmental stressors,
- recognize the significance of and benefits from Earth observations to support climate change adaptation and mitigation actions, emphasizing on cultural heritage protection international initiatives,
- learn about and be able to use brand new innovative Earth observation approaches, including tools and services, to assess and evaluate climate change impacts on cultural heritage.

Subjects covered:

- Ground-based metrics and telematics
- Satellite-based metrics and telematics
- GIS mapping
- Passive and active remote sensing technologies

Prerequisites: None

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (≥ 5) in the final or resit exams.

The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted. **Teaching Method:** Distance learning by conducting Group Counseling Meetings during the academic year on weekends.

CCC61 Resilience Strategies for Moveable Heritage

Module code: CCC61 ECTS Credit Points: 20

Module Type: Elective (students choose among course modules CCC61, CCC62 and CCC63).

Leads to specialization in Moveable Heritage

Year: 2nd

Language: English

Module general description: Climate change is a recognized threat to cultural heritage objects and cultural resources. This Course Module focuses on resilience strategies for the preservation and preventive conservation of movable cultural heritage (e.g. archaeological collections; ceramic, glass, metal objects; paintings; paper objects, photographic collections; textiles and costumes; leather, skin and fur objects; wooden objects and furniture; natural history collections; plastic objects; audio, video and data recording media), and the buildings that house them (museums, archives, storage facilities).

It emphasizes on a) the effects of climate change impacts on the condition of heritage objects through the understanding of weathering agents and other factors that lead to gradual degradation, using simulation techniques, non-destructive methods, sampling and monitoring methodologies and b) the assessment of the susceptibility of the housing facility itself to climate change impacts, such as anomalous fluctuation of ambient relative humidity, temperature, or threats, such as sea level rise, extreme weather events, water flooding, wildfires etc.

Sustainability is another issue to be addressed, since museums, repositories, archives and storage facilities already spend a large number of their resources to maintain indoor environmental conditions and these costs are expected to increase due to the effects of climate change.

Learning outcomes:

Upon the successful completion of the Course Module students will be able to:

- identify the factors and their possible synergistic action that lead to gradual degradation of movable cultural heritage and the ways to detect, report and mitigate their impact (damage they cause),
- assess the risk of climate change impacts or climate-triggered threats on museums, collections, repositories and storage facilities,

- adopt collection-specific monitoring methodologies and preventive conservation approaches including structural diagnosis and material analysis techniques specializing in the typology, structure and composition of the materials of the object itself and of the decoration that it carries,
- promote risk management approaches to the preservation of cultural heritage, and will
 acquire the awareness and knowledge required for planning and implementation of
 measures and practical actions aimed at avoiding and minimizing future deterioration or
 loss,
- design climate change adaptation or mitigation strategies for objects, collections and housing facilities, based on the expected severity of climate change impacts.

Subjects covered:

- Effects of climate change impacts on collections and storage facilities
- Technologies and techniques to identify problems and failures on moveable heritage
- Monitoring collections and storage facilities
- Adaptation and mitigation strategies for moveable heritage

Prerequisites: None.

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (≥5) in the final or resit exams.

The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted.

Teaching Method: Distance learning by conducting Group Counseling Meetings during the

Teaching Method: Distance learning by conducting Group Counseling Meetings during the academic year on weekends.

CCC62 Resilience Strategies for Monuments and Archaeological Sites

Module code: CCC62 ECTS Credit Points: 20

Module Type: Elective (students choose among course modules CCC61, CCC62 and CCC63).

Leads to specialization in Monuments and archaeological sites

Year: 2nd

Language: English

Module general description: The scope of this module is to introduce the students to the pathology of monumental structures and archaeological sites, its relation to the impacts of climate change and the strategies that can be adopted for their effective protection.

Fundamental parameters of deterioration due to climate change, such as water ingress, corrosion, soil erosion etc., as well as other natural phenomena such as earthquake actions shall be assessed in a way as to emanate the intrinsic manner of structural deterioration.

A variety of mature technologies for identifying failure patterns and failure modes as well as structural monitoring techniques for the development of degradation patterns will be examined.

The array of investigative and monitoring methods spans from traditional methods to high technological edge. State-of-the-art non-destructive testing techniques, site examinations, in situ tests, and laboratory sample tests shall be explored and will be used for the benefit of the condition awareness of the monumental structures. Emphasis shall be given to the data fusion and data integration into Building Information Models (BIM). Necessary adaptations to the preventive maintenance projects shall be discussed.

Thus, the students shall develop the skills needed for the delivery of risk analysis, and development of reciprocal risk mitigation measures for the protection of monuments and archaeological sites.

Learning Outcomes:

By the successful completion of this module the Students:

- shall apprehend the basics of the structural deterioration mechanisms of monumental structures, their pathologies and how these are expected to be exacerbated due to climate change.
- will develop a methodological way of thinking to mastermind the series of tests that, with the help of technology available, will lead to the understanding of the root causes of historical building deterioration.
- shall acquire the awareness and knowledge required for the implementation of a BIM procurement strategy.
- shall be equipped with necessary knowledge of risk analysis tools and of the reciprocal application of Risk Mitigation measures to Monuments and Archaeological Sites
- shall familiarize themselves with climate change adaptation and/or mitigation strategies for the protection of monuments and archaeological sites.

Subjects covered:

- Vulnerability of buildings and structures of cultural interest to climate change
- Technologies and techniques to identify problems and failures on built heritage
- Monitoring monuments and archaeological sites
- Adaptation and mitigation strategies for monuments and archaeological sites

Prerequisites: None.

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (≥ 5) in the final or resit exams.

The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted. **Teaching Method:** Distance learning by conducting Group Counseling Meetings during the academic year on weekends.

CCC63 Resilience Strategies for Natural and Historic Heritage Landscapes

Module code: CCC63 ECTS Credit Points: 20 **Module Type:** Elective (students choose among course modules CCC61, CCC62 and CCC63). Leads to specialization in Natural and Historic Heritage Landscapes

Year: 2nd

Language: English

Module general description: This course deals with climate change impacts on natural and historic landscapes, identification of potential problems in natural heritage and historic landscapes, monitoring of heritage landscapes and adaptation and mitigation strategies.

Learning Outcomes:

Upon successful completion of the course, students will:

- Familiarize with problems in natural and cultural heritage and learn to identify them.
- Learn how to study diachronic changes of culturally interesting landscapes
- Understand the landscape evolution
- Learn how to monitor heritage landscapes and how to combine collected information make conclusions.
- Learn to study interventions, conservation and restoration of the environment and cultural heritage
- Familiarize with adaptation and mitigation strategies for natural and cultural landscapes
- Understand geomorphological processes such as chemical weathering, deposition, erosion and their impact on historical heritage landscapes

Subjects covered:

- Climate change impacts on natural and historic landscapes
- Technologies and techniques to identify potential problems in natural heritage and historic landscapes
- Monitoring of heritage landscape
- Adaptation and mitigation strategies for natural heritage and historic landscapes

Prerequisites: None.

Evaluation: Students are assigned to submit four (4) written assignments during the academic year. The average grade of the four (4) written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of written assignments is activated only with a score equal to or above the pass level (\geq 5) in the final or resit exams.

The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

Students have the right to participate in the final/resit exams if (a) at least 50% of the potentially excellent grade has been obtained when adding the total of the four (4) assignments and (b) at least three (3) of the four (4) written assignments have been submitted.

Teaching Method: Distance learning by conducting Group Counseling Meetings during the academic year on weekends.

CCCDE Master's Thesis

Code: CCCDE

ECTS Credit Points: 20
Type: Compulsory

Year: 2nd

Language: English

General description: The Master's Thesis is meant to combine and utilize the knowledge students have acquired over the course of their studies.

Students may propose a topic of their choosing for their Master's Thesis, taking into account a special list of topics (with detailed descriptions) drafted by the C.M. Coordinators. This list is drafted based on the wider subject matter of the postgraduate studies program, as well as those of the five individual C.M. Students must prepare the final topic and description of the Master's Thesis in collaboration with the counselor.

Indicative topics for research:

- Introduction to heritage and heritage protection
- International policies, principles and legislation
- Historical review and theoretical approaches to heritage protection
- Research tools and technological innovation in heritage protection, management and interpretation
- Examples of heritage analysis and environmental issues
- Introduction to climatology
- Major climate and pollution parameter changes
- Extreme events linked to climatic change
- Geological impacts of climate change
- Synergistic phenomena
- Introduction to material science
- Archaeometry
- Material ageing
- Diagnostic technologies for material failure
- Ground-based metrics and telematics
- Satellite-based metrics and telematics
- GIS mapping
- Passive and active remote sensing technologies
- Effects of climate change impacts on collections and storage facilities
- Technologies and techniques to identify problems and failures on moveable heritage
- Monitoring collections and storage facilities
- Adaptation and mitigation strategies for moveable heritage

Learning Outcomes:

Upon completion of their Master's Thesis, students will be able to:

- Carry out original research on a wide variety of thematic areas related to heritage preservation from the impacts of climate change, depending on the direction they have chosen
- Research, compile, verify, and critically assess information, and effectively organize and present it
- Adhere to the principles and rules and standards of the protection of natural and cultural heritage
- Effectively and creatively utilize internet/digital tools/media to draft/edit/distribute their texts
- Critically and responsibly utilize both primary and secondary sources

General Regulation for Preparing Graduate Dissertations in PC with an annual Module Correspondence

For more information regarding the Specifications – Useful Material for writing Master's Theses and uploading a Thesis at the H.O.U. Repository, you can go to the Digital Training Area http://study.eap.gr and especially to the Program of Studies section.

Prerequisites: The presentation of the Master's Thesis takes place after the successful completion of the program's Course Modules.

Enviromental Design

Description

The scope of MSc Program "Environmental Design" is to develop critical thinking, to obtain knowledge and skills for the sustainable management and protection of the environment from the scientists dealing with the planning, the management and the control of infrastructure works, of buildings, of public urban spaces, of landscape, of cities, of productive activities and the mitigation of climate change of the adaptation to it.

Learning Outcomes

Upon successful completion of the MSc Program "Environmental Design", and depending on chosen option, students will be able to:

- Understand the basic principles of sustainability, of environmental legislation and of
- environmental assessment, and be able to carry out environmental impact studies.
- Understand the principles of environmental procedures and pollution, their impact on humans, and the impacts of human activities on the environment.
- Design with environmental friendly and sustainable way the infrastructure projects (transport, energy, hydraulics, coastal and erosion protection projects, pollution protection projects, etc.), the buildings, the cities and the productive activities.
- Understand the climate change phenomenon and its impacts, to implement methods to reduce greenhouse gas emissions and to adapt in a world with a changing climate.

Admission Requirements

The Post-Graduate Programme accepts applicants holding an academic higher education degree in a related subject, or of other subjects, provided that they also submit a formal Declaration of the candidate stating: "I hereby declare that I possess the necessary level of knowledge of the subjects covered in the Study Programme....... and I am able to meet its requirements."

The programme is offered in Greek.

The knowledge of a foreign language and good computer-Internet skills would be useful for the successful participation in the programme.

Note:

Holders of a degree or diploma of higher education means graduates of Greek Universities or Polytechnics or Higher School of Fine Arts or Higher School of Pedagogical and Technological Education or Higher Technological Educational Institutions (ATEI) or those who hold academically equivalent first cycle degrees from recognized foreign educational institutions with the degrees awarded by the Greek Higher Educational Institutions, in accordance with

the provisions of article 304 of Law No. 4957/2022 (Government Gazette 141/21.07.2022, vol.)

Marking:

For the evaluation of the application to the Postgraduate Studies Programme, it will be examined whether the candidate's institution of study is or may be included in the National Register of Recognised Higher Education Institutions of Foreign Countries and whether the candidate's degree is or may be included in the National Register of Types of Degrees of Recognised Institutions of Foreign Countries.

The Hellenic Open University, if the degree is included in the list of article 307 of Law No. 4957/2022, must request a "Certificate of Place of Study", which is issued and sent by the foreign university. If the place of study or part of the studies is confirmed as the Greek territory, the degree is not recognized, unless the part of the studies that took place in the Greek territory is in a public higher education institution or in a recognized foreign educational institution within the meaning of paragraph b) of article 299 of Law No. 4957/2022.

Minimum study duration

2 academic years

ECTS credit points

120

Classification according to ISCED-2011 of UNESCO

- Based on the level of Education: 7
- Based on the field of Education: Environmental Protection

Classification according to ISCED-2013 of UNESCO

Based on the field of Education:

0788 Engineering, manufacturing and construction, inter-disciplinary programmes Fields:

0521 Environmental sciences

0531 Chemistry

0532 Earth sciences

0711 Chemical engineering and processes

0712 Environmental protection technology

0713 Electricity and energy

0716 Motor vehicles, ships and aircraft

0731 Architecture and town planning

0732 Building and civil engineering

1041 Transport services

Learning Material

Learning material used is mainly printed textbooks but also audiovisual and electronic learning material. The printed material is especially adapted to meet the needs and standards of distance education.

Chapters clearly state aims and objectives. Key concepts and expected learning outcomes. Self-assessment questions and exercise.

Alternative teaching material. To assist the students to a better understanding of the main teaching material. It utilizes, clarifies and enriches, if necessary, the already existing material.

Contact

Student Records:

Tel.: +30-2610 367314 E-mail: psh@eap.gr

General Information:

Tel.: +30-2610367805 - 2610367806 - 2610367807 -2610367426 E-mail: info@eap.gr

Options

The MSc Program "Environmental Design" delivers Postgraduate Specialization Diplomas in Environmental Design, with the following options:

- "Environmental Design of Infrastructure Works"
- "Environmental Design of Cities and Buildings"
- "Environmental Design for the Mitigation of Climate Change"

Assessment" is a core module and is common in all (3) options.

Course Structure

The programme consists of thirteen Modules and a Postgraduate Thesis and leads to the acquisition of a Master's Degree in "Environmental Design" in one of the three (3) options. Choosing an option is compulsory. The first Module PSX50 "Sustainability - Environmental

Option 1: «Environmental Design of Infrastructure Works»	
1st Year	
PSX50 Sustainability – Environmental Assessment	(M, 20 ECTS)
PSX51 Environmental Urban and Transport Planning	(M, 20 ECTS)
PSE54 Environmental Design of Environmental Infrastructure Projects	(M, 20 ECTS)
2nd Year	
PSX62 Technology for Dealing with Environmental Impacts	(M, 20 ECTS)
Master's thesis	(M, 40 ECTS)
Option 2: «Environmental Design of Cities and Building»	
1st Year	
PSX50 Sustainability – Environmental Assessment	(M, 20 ECTS)
PSX51 Environmental Urban and Transport Planning	(M, 20 ECTS)
PSP53 Environmental Urban Design and Urban Planning and	(M, 20 ECTS)
Arrangement of Open Spaces	
2nd Year	
PSP62 Environmental Design of Buildings	(M, 20 ECTS)
Master's thesis	(M, 40 ECTS)

Option 3: «Environmental Design for the Mitigation of Climate Change»

1st Year

PSX50 Sustainability – Environmental Assessment	(M, 20 ECTS)
PSK51 Greenhouse Effect – Climate Change	(M, 20 ECTS)
PSK52 Greenhouse Gas Mitigation	(M, 20 ECTS)

2nd Year

PSK60 Adapting to a World with a Different Climate	(M, 20 ECTS)
Master's thesis	(M. 40 ECTS)

<u>Instructions for the selection of Thematic Units:</u>

Option 1: « Environmental Design of Infrastructure Works »

During the 1st Year, if you wish to choose one (1) TU, you must enroll in PSX50, if you wish to select two (2) TUs, you must enroll on PSX50 and PSX51. If you wish to select three (3) TUs, you must select PSX50, PSX51 and PSE54.

During the 2nd Year, if you wish to choose one (1) TU, you must enroll in PSX62 and at the same time you may proceed with the preparation of the Master's thesis.

In order to obtain the Master's degree in 2 Academic Years, the successful completion of all three (3) TUs of the 1st Year, as well as the successful completion of the last TU and the preparation of the Master's thesis of the 2nd Year, is mandatory.

Upon successful completion of all the required TUs of the Option 1, you may proceed with the presentation of the Master's thesis.

Option 2: «Environmental Design of Cities and Buildings»

During the 1st Year, if you wish to choose one (1) TU you must enroll in PSX50, If you wish to select two (2) TUs, you must enroll on PSX50 and PSX51. If you wish to select three (3) TUs, you must select PSX50, PSX51 and PSP53.

During the 2nd Year, if you wish to choose one (1) TU, you must enroll in PSP62 and at the same time you may proceed with the preparation of the Master's thesis.

In order to obtain the Master's degree in 2 Academic Years, the successful completion of all three (3) TUs of the 1st Year, as well as the successful completion of the last TU and the preparation of the Master's thesis of the 2nd Year, is mandatory.

Upon successful completion of all the required TUs of the Option 2, you may proceed with the presentation of the Master's thesis.

Option 3: «Environmental Design for the Mitigation of Climate Change»

During the 1st Year, if you wish to choose one (1) TU, you must enroll in PSX50, If you wish to select two (2) TUs, you must enroll on PSX50 and PSK51. If you wish to select three (3) TUs, you must select PSX50, PSK51 and PSK52.

During the 2nd Year, if you wish to choose one (1) TU, you must enroll in PSK60 and at the same time you may proceed with the preparation of the Master's thesis.

In order to obtain the Master's degree in 2 Academic Years, the successful completion of all three (3) TUs of the 1st Year, as well as the successful completion of the last TU and the preparation of the Master's thesis of the 2nd Year, is mandatory.

Upon successful completion of all the required TUs of the Option 3, you may proceed with the presentation of the Master's thesis.

Course Modules

PSX50 Sustainability – Environmental Assessment

Code TU: PSX50 ECTS Credit Points: 20

Type of TU: Mandatory for all Options

Year offered: 1st

Teaching Language: Greek

General description of the TU: The T.U. aims to develop students' critical thought and provide the necessary specialized knowledge and thought processes to understand the issues of environmental urban planning and the environmental design of public transportation projects throughout their life cycle.

Learning Outcomes: Upon successful completion of PSX50, students will have obtained understanding of the following and will be able to effectively continue their studies in the other T.U. of the program.

- Sustainability, The energy issue: origins, terminology, issues, consequences, and politics
 of sustainability. The object of political ecology, main currents and approaches, and
 scope. The energy issue and its impacts on the environment and climate change.
- Introduction to Anthropogeography: the main principle of anthropogeography to understand the man-made pressures to the environment and the climate change.
- Environmental Economics: basic principles, main currents, scope.
- Terrestrial, water, and atmospheric Pollution: the problem and basic principles of environmental pollution, its sources, spatial-geographic parameters, effects on public health, ecosystems, and the environment.
- Environmental Assessment, Environmental Impact Assessments, Environmental Legislation: principles, methodology and applications.

Cognitive subjects of the TU:

- Sustainability, the energy issue
- Introduction to Anthropogeography
- Environmental Economics
- Soil. Water and Air Pollution
- Environmental Assessment, Environmental Impact Studies, Environmental Legislation

Prerequisites: None

Evaluation: Students are assigned to submit the written assignments during the academic year. The average grade of the written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

PSX51: Environmental Urban and Transport Planning

Code TU: PSX51

ECTS Credit Points: 20

Type of TU: Mandatory for the 1st and 2nd Options

Year offered: 1st

Teaching Language: Greek

General description of the TU: The T.U. aims to develop students' critical thought and provide the necessary specialized knowledge and thought processes to understand the issues of environmental urban planning and the environmental design of public transportation projects throughout their life cycle.

Learning Outcomes: Upon successful completion of PSX51, students will have understood the following:

- The basic parameters in the organization of urban space, such as land uses, urban density and the structure of the urban tissue, their function with the organization of transportation networks, as well as the role of urban planning in their management.
- The concept of "urban sustainability" on the basis of which key points of the debate on modern cities, urbanization processes and urban policies are developed.
- The concept of "sustainable urban mobility", which is a long-term strategy for the future development of an urban area and in particular the infrastructure and transport and mobility services. The way of implementing the concept in the modern city, the way of transformation, the tools and methods of its application. These issues are also examined through good practices and applied examples of cities.
- The major challenges for the sustainability of cities, with particular reference to the development of greenery, the organization of mobility, land use conflicts, urban governance, the strengthening of social cohesion, road safety, the accessibility of People with Disabilities, etc.
- The environmental effects of transport systems in terms of the construction of the infrastructure and in terms of their use. The challenge of an adequate and efficient transport system requires a systematic approach.
- The transition to a sustainable and intelligent mobility. A triple revolution in the transport sector is underway: electrification, self-driving and vehicle sharing. Through applied examples and with a critical approach, the future challenges and perspectives of transport are presented.

Cognitive subjects of the TU:

- Environmental Urban and Transport Planning
- Environmental Impact of the Construction of Transport Projects
- Environmental Impacts from the Use of Transport Projects

Prerequisites: None

Evaluation: Students are assigned to submit the written assignments during the academic year. The average grade of the written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

PSE54: Environmental Design of Environmental Infrastructure Projects

Code TU: PSE54

ECTS Credit Points: 20

Type of TU: Mandatory for the 1st Option

Year offered: 1st

Teaching Language: Greek

General description of the TU: The T.U. aims to develop students' critical thought and provide the necessary specialized knowledge and thought processes for the environmental design of the main types of infrastructure projects for the protection of the environment: coastal and marine projects, hydraulic projects, wastewater and solid waste treatment, and the issue of erosion, protection, and restoration of soil.

Learning Outcomes: Upon successful completion of PSE54, students will have understood the following, and will be able to environmentally design the studied infrastructure projects.

- Soil Erosion, Protection, and Restoration: understanding of soil erosion, methods of protecting soil from erosion, and restoring eroded and polluted soil.
- Environmental Design of Coastal and Marine Projects: understanding of marine and coastal processes (waves, wave action, wave currents, sediment transport, morphodynamics) in order to design coastal protection projects. Understanding and implementation of integrated coastal zone management.
- Environmental Design of Hydraulic Projects: study of the overall water cycle (dams, water transport pipelines, water purification, wastewater transport pipelines, disposal of treated wastewater) and its environmental impact, in order to design environmentally sound hydraulic projects.
- Liquid Waste Management and Treatment: The means of managing wastewater and their treatment processes, in order to be able to design a wastewater treatment plant.
- Solid Waste Management and Treatment: the means of solid waste management and treatment processes, in order to be able to design a solid waste treatment facility.

Cognitive subjects of the TU:

- Erosion and Soil Protection, Environmental Design of Coastal Projects
- Environmental Design of Hydraulic Works
- Wastewater Management and Treatment
- Solid Waste Management and Treatment

Prerequisites: None

Evaluation: Students are assigned to submit the written assignments during the academic year. The average grade of the written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

PSP53 Environmental Urban Design and Urban Planning and Arrangement of Open Spaces

Code TU: PSP53
ECTS Credit Points: 20

EC13 Credit Points: 20

Type of TU: Mandatory for the 2nd Option

Year offered: 1st

Teaching Language: Greek

General description of the TU: The topics discussed in the present Thematic Unit are meant to supplement the knowledge students acquired in the previous two thematic units, and focus on environmental urban design and planning and the environmental design of open spaces and landscapes, aimed at sustainable management of urban spaces and the improvement of living conditions in urban environments. Environmental urban design and planning, together with the principles of environmental building design, is meant to approach the issue of architectural structuring and management of man-made spaces, for sustainable development

and environmental protection.

Learning Outcomes: Upon successful completion of PSP53, students will have obtained the following:

- Understanding of how the man-made environment is constructed (architectural solutions and residential units)
- Understanding of how traditional buildings and settlements were formed, and the problems associated with the transition from traditional settlements to the current development phase
- Understanding of the connections between individual structures and the wider urban environment, and the environmental impact of construction activities
- Knowledge of the legal framework, protection agencies, and policies for the urban environment
- Understanding of the general and special categories of open public spaces and ability to propose environmentally oriented solutions
- Understanding of the concept of the landscape in the design of outdoor spaces, and the parameters for large-scale landscape design
- Knowledge of the properties of building materials vis à vis their ecological function, toxicity, and environmental footprint, and understanding of the concepts of re-use and recycling of building materials
- Ability to propose solutions for the conservation of water, the utilization of soft energy and the restoration of ecosystems as part of the function of an urban environment

Cognitive subjects of the TU:

- History of the City and Urban Planning
- Principles and Applications of Urban Environmental Design and Urban Environmental Planning
- Environmental Landscape Design
- Implementation of Urban Environmental Planning in Greece and the World
- Environmental Adaptation of Traditional Architecture

Prerequisites: None

Evaluation: Students are assigned to submit the written assignments during the academic year. The average grade of the written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

PSK51 Greenhouse Effect – Climate Change

Code TU: PSK51

ECTS Credit Points: 20

Type of TU: Mandatory for the 3rd Option

Year offered: 1st

Teaching Language: Greek

General description of the TU: The T.U. aims to develop students' critical thought and provide the necessary specialized knowledge and approaches to the greenhouse effect, its causes, its connection to the economy, and scenarios for the future of the Earth's climate.

Learning Outcomes: Upon successful completion of PSK51, students will have obtained the understanding of the greenhouse effect, its natural and anthropogenic causes, the sources of

greenhouse gases, the correlation between these gases and the energy used in economic activity, and scenarios for the future of the Earth's climate. Moreover, they will be able to use R for meteorological and climate change applications.

Cognitive subjects of the TU:

- Introduction to R for climate change
- Greenhouse Effect Climate Climate Change
- Natural and Anthropogenic Greenhouse Gas Emission
- Correlation of Greenhouse Gases with Energy and the Economy
- Scenarios for the Future Climate of the Earth

Prerequisites: None

Evaluation: Students are assigned to submit the written assignments during the academic year. The average grade of the written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

PSK52 Greenhouse Gas Mitigation

Code TU: PSK52 ECTS Credit Points: 20

Type of TU: Mandatory for the 3rd Option

Year offered: 1st

Teaching Language: Greek

General description of the TU: The T.U. aims to develop students' critical thought and provide the necessary specialized knowledge and approaches t for the decrease, through management and technology, the emission of greenhouse gases, the utilization of renewable sources of energy, and the agreements for the decrease of greenhouse gases.

Learning Outcomes: Upon successful completion of PSK52, students will have understood the means by which greenhouse gas emissions may be limited, the issue of the conventional and renewable sources of energy in addition to existing policies and agreements for the limitation of greenhouse gas emissions. Students are expected to be able to propose ways of limiting greenhouse gas emissions, in addition to being able to plan processes with limited carbon footprints.

Cognitive subjects of the TU:

- Managing Limitation of Greenhouse Gas Emission
- Technological Limitation of Greenhouse Gas Emissions
- Conventional and Renewable Energy Sources
- National and International Greenhouse Gas Reduction Policies International Agreements

Prerequisites: None

Evaluation: Students are assigned to submit the written assignments during the academic year. The average grade of the written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

PSX62 Technology for Dealing with Environmental Impacts

Code TU: PSX62

ECTS Credit Points: 20

Type of TU: Mandatory for the 1st Option

Year offered: 2nd

Teaching Language: Greek

General description of the TU: The T.U. aims to develop students' critical thought and provide the necessary specialized knowledge and approaches to the management and treatment or pollution and the environmental impacts of the entire cycle of energy and its environmental design.

Learning Outcomes: Upon successful completion of PSX62, students will have understood the following, in order to provide an effective response to the issue of air pollution and of energy.

- Management and Treatment of Gaseous Pollutants: Air pollution and the ways of managing air pollutants and their treatment processes.
- Climate change: The green-house phenomenon, climate change, the contribution of greenhouse gases, management and technological solutions for climate change mitigation.
- Environmental Design of Conventional Energy Forms: study of the overall cycle of energy produced from fossil fuels (exploration, extraction, transportation, processing, treatment, management), as well as their impact on the environment, in order to design environmentally friendly energy projects.
- Environmental Design of Renewable Energy Sources: study of the overall cycle of energy produced from renewable energy sources (Hydraulic, Aeolic, Solar, Geothermic Energy, Biomass, etc.), and nuclear energy, as well as their impact on the environment, in order to design environmentally friendly energy projects

Cognitive subjects of the TU:

- Management and Treatment of Air Pollutants
- Climate change
- Environmental Design of Conventional Energy Projects
- Environmental Design of Renewable Energy Sources

Prerequisites: None

Evaluation: Students are assigned to submit the written assignments during the academic year. The average grade of the written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

PSP62 Environmental Design of Buildings

Code TU: PSP62

ECTS Credit Points: 20

Type of TU: Mandatory for the 2nd Option

Year offered: 2nd

Teaching Language: Greek

General description of the TU: The T.U. aims to provide students with the necessary knowledge to take into account the principles of environmental protection, energy conservation, and the creation of conditions of user comfort -both thermal and visual- from the initial stages of the conception of an architectural project. Students are expected to be able to produce a sound architectural project through the utilization of the opportunities

offered by the natural environment, through bioclimatic design and the use of soft energy. In addition to discussing how to optimize the energy performance of new buildings, the thematic unit aims to demonstrate an integrated approach to the energetic refurbishment of existing buildings.

Learning Outcomes: Upon successful completion of PSP62, students will have obtained the following:

- Understanding of the climate and its contribution in design and construction of buildings
- Knowledge of the methods of capturing solar radiation and storing thermal energy and for natural cooling and ventilation mechanisms of buildings
- Ability to utilize solar radiation to heat and cool buildings with passive solar systems
- Understanding of the thermal balance of buildings and its correlation with the need for energy conservation
- Understanding of the physics of light, the process of perception, and the mechanism of vision
- Understanding of the factors and processes that shape the perception of thermal and visual comfort
- Knowledge of the basic tools of environmental building design, environmental analysis software, legislation, and energy and environmental regulations
- Understanding of the environmental issues at the small scale of urban environments
- ability to evaluate the functions of planting in spaces adjacent to buildings in relation to their energy functions
- Knowledge of the technologies used in the energy renovation and energy performance upgrade of buildings
- Knowledge of the renewable energy forms and their contribution to the heating/cooling load of buildings

Cognitive subjects of the TU:

- Environmental Design of Buildings
- Environmental Design of the Surrounding Area
- Environmental Upgrading of Existing Buildings

Prerequisites: None

Evaluation: Students are assigned to submit the written assignments during the academic year. The average grade of the written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

PSK60 Adapting to a World with a Different Climate

Code TU: PSK60

ECTS Credit Points: 20

Type of TU: Mandatory for the 3rd Option

Year offered: 2nd

Teaching Language: Greek

General description of the TU: The T.U. aims to develop students' critical thought and provide the necessary specialized knowledge and approaches to the consequences of climate change and the adaptation to a world with a changing climate.

Learning Outcomes: Upon successful completion of PSK60, students will have understood the

consequences of climate change for the environment, ecosystems, mankind, and human activities. Students are expected to be able to propose means of adapting human activities to a future world with a different climate.

Cognitive subjects of the TU:

- Impact of the Future Climate on Earth and Ecosystems
- Impact of the Future Climate on the Human Species and Human Activities
- Adaptation of the Human Species and Human Activities

Prerequisites: None

Evaluation: Students are assigned to submit the written assignments during the academic year. The average grade of the written assignments, weighted at 30%, is taken into consideration for the calculation of the final grade. The grade of the final or the resit exams shall be weighted at 70 % for the calculation of the final grade.

PSXDE Thesis

Module code: PSXDE ECTS Credit Points: 40 Module Type: Compulsory

Year: 2nd

Language: Greek

Module general description: The research objects utilized in writing a thesis are harmoniously integrated into the main orientations of the program, that is, the sustainable management and protection of the environment, the management, and control of infrastructure works, buildings, public urban spaces, landscape, cities, of productive activities and the mitigation of

climate change of the adaptation to it.

From the rankings of the three-member committees, the Director of the program determines a list of potential supervisors, i.e. SEPs whose subject areas correspond to the subject areas and objectives of the curriculum, and asks them to send up to 5 subject areas or proposed titles at the beginning of each calendar year. The titles are compiled and posted on the educational platform. A file of the potential supervisors' details and backgrounds is also posted.

Students electronically select up to 3 desired titles and the corresponding subject areas. The Director makes the allocation of supervisors to students before the beginning of each academic year, i.e. the A' and B' supervisors are assigned.

The theory and practice used to further deepen the student's knowledge are based to some extent on the materials modules. However, for further deepening and acquisition of specialized knowledge and skills, the student, in collaboration with the supervisor, studies work from the relevant literature. This process usually takes 2-3 months. In total three intermediate reports are submitted to the educational platform. The 1st contains the structure and timetable proposal of the thesis, as well as the bibliography overview. The 2nd and 3rd reports are submitted approximately every two months. Each report contains the work completed up to that point. The report is posted after the supervisor's comments have been incorporated.

Key subjects of the module are the set of all subjects of individual modules as they are written in the respective outlines.

Learning Outcomes: The students who will successfully complete the module:

- they will have obtained a deep knowledge of the subject of their subject to the extent that they will be able to comfortably and fluently read and acquire information on cutting-edge research topics from publications in research journals of the respective research area.
- they will be able to give high level seminars in which they will be able to explain their subject clearly and to answer related questions from other scientists.

General Regulation for Preparing Graduate Dissertations in PC with an annual Module Correspondence

For more information regarding the Specifications – Useful Material for writing Master's Theses and uploading a Thesis at the H.O.U. Repository, you can go to the Digital Training Area http://study.eap.gr and especially to the Program of Studies section.

Prerequisites: The presentation of the Postgraduate Thesis takes place after the successful completion of the program's Course Thematic Units.

Interaction Generative Design

The Master's Program in "Interaction Generative Design" is suspended from the academic year 2025-2026, according to a decision taken at the 15th/04-04-2025 Meeting of the Senate.

Object – Purpose

In Interaction Generative Design the designer is able to define goals and the parameters that affect the design result, such as geometry, material and construction method, and to produce all possible versions of the design problem solution based on selected data (this is the relevance of the design process to evolutionary morphogenesis processes in nature). The designer has the ability to move within different solutions and choose the most suitable. Apart from the design phase, the implemented product can interact with the resident, the visitor or the observer of the space / object, in a continuous transformation, depending on the condition it is called to serve.

Algorithmic design essentially aims to structure a way of thinking about the design management of different design parameters and the construction of the designed product, whether it is space or an action (i.e. performance). These parameters involve both with the geometry of the object or space being designed, and the interaction of the design object with the physical space in which it is intended to be placed. Thus, in combination with the principles of Interaction Generative Design, the product/action designer is able to control, not only the structure and form of the object or space, but also its interaction with the natural space and with its visitor through the design process.

Through Machine Based Algorithmic Design, the designer is able to introduce into the design process the way contemporary machines work. This is a crucial parameter in designing, which mainly determines the structure of the object, as well as the wiring of its individual elements, but in many cases also affects its shape.

Algorithmic design not only organizes the principles around the design of a space or object, but also enters specialized cognitive fields, such as the design of the sound of an action, the design of a performance, where performers interact with space, as well as graphic design, whose structure can be parametrically influenced by the environment in which it is located.

In Greece there is a complete lack of relevant studies, in the subject of Interaction Generative Design, from the process of conception and configuration, to the stage of implementation using contemporary construction methods. This gap will be filled by the Hellenic Open University through the MSc Interaction Generative Design.

Learning outcomes

Students will be able to:

- Understand the conceptual framework of algorithmic design.
- Understand computational mechanisms for creative processes of generating space and objects.
- Analyze the form of space or object in the context of algorithmic thinking, and describe it with parametric models.
- Get to know and get acquainted with the methodologies of parametric design and the use of visual code.
- Manage complex data structures in algorithmic design.
- Design and implement according to algorithmic design mechanisms and rationales.
- Incorporate design criteria in the form of parameters in such mechanisms.
- Sketch using algorithms.
- Understand fundamental concepts from curve and surface theory and get to know the properties of curves and surfaces.
- Manage Euclidean transformations on planes and in space.
- Design pleated and folded (hinged) surfaces.
- Design Bezier surfaces, NURBS surfaces, free form surfaces and calculate their appropriate developments.
- Control the evolution and transformation of the form of the object being designed and determine the desired solutions to the design problem from a series of variations.
- Understand the link between the process of digital design and digital fabrication.
- Understand the capabilities of digital fabrication techniques, as well as their differences,
 and adapt the digital model according to the limitations of digital prototyping machines.
- Choose the appropriate digital fabrication method according to the geometric characteristics of the model, the properties of the construction material and the digital prototyping machines.
- Know the meaning, basic principles, and parameters of interaction.
- Analyze examples of relevant interactive systems and understand the terms of an advantageous interaction and the parameters to achieve it.
- Know the perceptual parameters, capabilities, and limitations of habitation in an interactive environment.
- Understand and manage the concept of visual geometric illusion.
- Understand the basic principles of applying the above methodologically and practically in the design of interaction.
- Understand and use the methods and parameters of design of interactive performances, installations, spaces, or objects in applied projects.

ECTS Credits of the Program

The total number of ECTS required for the acquisition of the Master's degree is 90 ECTS.

Characterization of the Postgraduate Program

Master of Science in Interaction Generative Design (M.Sc. Interaction Generative Design)

Classification according to the UNESCO Code ISCED-2011

Based on the level of study: 7

Classification according to the UNESCO Code ISCED-2013

Based on the field of Education and Training: 0788 Inter-disciplinary programmes and qualifications involving engineering, manufacturing and construction

- 0211 Graphic design
- 0211 Interactive media design
- 0212 Design of Industrial Products (artistic)
- 0212 Interior Architecture
- 0541 Geometry
- 0612 Computer media applications
- 0613 Computer programming
- 0731 Architectural urban design and planning
- 0731 Architecture
- 0731 Building design
- 0731 landscape architecture
- 0731 Structural architecture

Language of instruction

The language of instruction of the program, as well as of the Master's thesis, is English.

Duration of studies

The minimum duration for the completion of the program. The minimum duration of study is one and a half (1 %) academic years, i.e. three (3) semesters.

Admission Requirements

The Post-Graduate Programme accepts applicants holding an academic higher education degree in a related subject, or of other subjects, provided that they also submit a formal Declaration of the candidate stating: "I hereby declare that I possess the necessary level of knowledge of the subjects covered in the Study Programme...... and I am able to meet its requirements".

The programme is offered in English.

The knowledge of an extra foreign language except the language of the programme and good computer-Internet skills would be useful for the successful participation in the programme. (see <u>Annex</u>)

Note:

Holders of a degree or diploma of higher education means graduates of Greek Universities or Polytechnics or Higher School of Fine Arts or Higher School of Pedagogical and Technological Education or Higher Technological Educational Institutions (ATEI) or those who hold academically equivalent first cycle degrees from recognized foreign educational institutions

with the degrees awarded by the Greek Higher Educational Institutions, in accordance with the provisions of article 304 of Law No. 4957/2022 (Government Gazette 141/21.07.2022, vol.)

Marking:

For the evaluation of the application to the Postgraduate Studies Programme, it will be examined whether the candidate's institution of study is or may be included in the National Register of Recognised Higher Education Institutions of Foreign Countries and whether the candidate's degree is or may be included in the National Register of Types of Degrees of Recognised Institutions of Foreign Countries.

The Hellenic Open University, if the degree is included in the list of article 307 of Law No. 4957/2022, must request a "Certificate of Place of Study", which is issued and sent by the foreign university. If the place of study or part of the studies is confirmed as the Greek territory, the degree is not recognized, unless the part of the studies that took place in the Greek territory is in a public higher education institution or in a recognized foreign educational institution within the meaning of paragraph b) of article 299 of Law No. 4957/2022.

Teaching materials – software/hardware

The teaching material, on which the Program is based, and which students must study on a consistent basis during their studies, is made available to them in digital or printed form by the Hellenic Open University. It is a basic and supplementary material concerning the content of each Course Module (CM).

A student of professional license of the software Rhinoceros, version 7 for windows or mac, as provided at: https://www.rhino3d.com/en/sales/europe/Greece/all/, as well as a personal computer that meets the minimum requirements of the current version of the software are required to attend the program. The Hellenic Open University does not provide software and personal computer.

Communication

Student Registry Department:

Tel.: +30 2610 367342 E-mail: igd@eap.gr

Student service desk:

Tel.: +30 2610367805 - 2610367806 - 2610367807 -2610367426 E-mail: info@eap.gr

Program structure

The Postgraduate Program "Interaction Generative Design" is structured in three (3) academic semesters, which include six (6) compulsory Course Modules (CMs) and the preparation of a Master's Thesis. The minimum duration of study is one and a half (1 1/2) academic years. The successful completion of the six (6) CMs as well as the successful preparation and presentation of the Master's Thesis is mandatory for the acquisition of the Master's degree.

1st Semester

IGD50 Interactive Design Theory	(M ¹ , 10 ECTS)
IGD51 Geometric concepts in Algorithmic design 1	(M, 10 ECTS)
IGD52 Introduction to Algorithmic design	(M, 10 ECTS)
2nd Semester	
IGD53 Geometric concepts in Algorithmic design 2	(M, 10 ECTS)

IGD54 Digital Fabrication Techniques	(M, 10 ECTS)
IGD55 Interactions: Algorithmic Sound, Image, Space	(M, 10 ECTS)
<u>3rd Semester</u>	
IGDDE Dissertation Thesis	(M. 30 ECTS)

Note:

M¹: Mandatory

Instructions for the selection of CMs.

You can choose from one (1) to three (3) CMs per semester (30 ECTS).

The selection of the CM is made in the order that the program structure follows.

For example, in the first semester, if you wish to choose one (1) CM, you must enroll in IGD50. If you wish to select two (2) CMs, you must enroll on IGD50 and IGD51. If you wish to select three (3) CMs, you must select IGD50, IGD51 and IGD52.

The choice of IGD53 presupposes the successful attendance of IGD51.

The choice of IGD54 presupposes the successful attendance of IGD52.

The choice of IGD55 presupposes the successful attendance of IGD52.

During the CM enrollment process, the CM of the previous semester must be completed first and then the CM of the next semester should be selected.

The preparation of the Master's thesis (IGDDE) presupposes the successful attendance of all six (6) CMs.

The viva exam of the Master's thesis presupposes the successful completion of all Thematic Units of the Program.

In order to obtain the Master's degree, the successful completion of six (6) CMs, as well as the successful completion and presentation of the Master's thesis, is mandatory.

Module Evaluation:

- **a1**. Two (2) Short Written Assignments (SWA) that contribute to the final grade with a weight equal to 10% each of them.
- **a2**. One (1) Written Assignment (WA) which contributes to the final grade with a weight equal to 20%.

The grade of the written assignments (SWA & WA) is secured when a grade equal to or above the passing grade (≥5) in the final exam or resit is achieved only.

a3. Final exam or resit (FE) contribute to the final grade with a weight equal to 60%.

The **Final Grade** of each Module on the scale of 1 to 10 is calculated as:

Final Grade = $(SWA \times 0,1) + (SWA \times 0,1) + (WA \times 0,2) + (FE \times 0,6)$

Establishment of participation right in the final exam:

Participation in the final examination will be allowed, if:

- 1) the sum of the grades of the aforementioned assignments (see a1 and a2) is equal to, or greater than 50% of the assigned grading scale, i.e. at least 20 points out of 100, based on the weights mentioned in points a1 and a2,
- 2) at least 2 of the 3 should be submitted.

SWA & WA grade on the scale of 1 to 100			
SWA1	SWA2	WA	Minimum grade that is required
(10%)	(10%)	(20%)	for participation in final exams

SWA1 × 1 SWA2 × 1 WA × 2 20/100

Information about the Course Modules

IGD50 Interactive Design Theory

THE Code: IGD50 ECTS Credits: 10

Type of THES: Mandatory

Semester in which it is offered: First (1st)

Language of instruction: English

Purpose of the CM: The aim of this course module is to understand the concept, basic principles, and parameters of interaction, in the context of computer science (human-computer interaction), the social sciences and the study of human communication (human-to-human interaction). Students study the properties of advantageous interactive systems in the context of a human-computer interface system, as well as the perceptual parameters of inhabiting interactive environments so that they can then apply these parameters onto their design methodology.

Learning outcomes: Students will be able to:

- Know the meaning, basic principles and parameters of interaction in the context of computer science, social sciences and studies in human communication.
- Analyze examples of relevant interactive systems.
- Understand the terms of an advantageous interaction and the parameters of its achievement.
- Get to know the perceptual aspects, potential and limitations of inhabiting interactive environments.
- Understand the basic principles of application of the above methodologically and practically in interactive design.

Subjects:

- The concept of interaction
- Conditions for an advantageous interaction
- Theory of aesthetic perception
- Technology of aesthetic perception
- Levels of interaction in action-reaction systems
- Computer system communication with humans and physical environments
- Positive and negative feedback

Evaluation: Completion of written assignments during the academic semester which constitute a 40 percent of each student's grade, if a pass is obtained in the final or repetitive examination. Final exam grades constitute a 60 percent of the students' final course grade.

Prerequisites: There are no prerequisites for this CM.

IGD51 Geometric concepts in algorithmic design 1

TH Code: IGD51 ECTS Credits: 10

Type of THES: Mandatory

Semester in which it is offered: First (1st)

Language of instruction: English

Purpose of the CM: This module has a dual objective. On one hand, it introduces students to basic geometric concepts found in algorithmic design. On a second level, it focuses on issues of visual perception and the creation of optical illusions, using algorithmic design as a tool. The application of the geometric knowledge of this module takes place in the field of visual illusions, with the aim of broadening students' perception of space and its objects.

Learning outcomes: Students will be able to:

- Understand basic geometric concepts in algorithmic design.
- Understand basic concepts related to the design of curved lines and surfaces in algorithmic design.
- Understand fundamental concepts of topology of space.
- Understand the terms in which an optical illusion is created.
- Know the methods of designing an optical illusion.
- Handle geometrical transformations on the plane and in 3d space, using a parametric tool.
- Draw curves and surfaces by the methods of algorithmic design.
- Design an optical illusion with algorithmic design as a tool.

Subjects:

- Concepts of visual perception in design -Perspective illusions
- Introduction to Geometry in algorithmic design 1
- Geometric transformations on the plane and in space
- Elements of curve theory Curve design methods
- Elements of surface theory Surface design methods (sketching with algorithms)
- Elements of spatial topology (in NURBS and MESH models) Topological object transitions between spaces of different dimensions – Projections of higher dimension objects

Evaluation: Completion of written assignments during the academic semester which constitute a 40 percent of each student's grade, if a pass is obtained in the final or repetitive examination. Final exam grades constitute a 60 percent of the students' final course grade.

Prerequisites: There are no prerequisites for this CM.

IGD52 Introduction to Algorithmic design

THE Code: IGD52 ECTS Credits: 10

Type of THES: Mandatory

Semester in which it is offered: First (1st)

Language of instruction: English

Purpose of the CM: The aim of this course module is to introduce students to algorithmic thinking and the use of parametric tools for the design of spaces and objects. Students study the processes of algorithmic description of the form, and understand the capabilities of computational mechanisms for form-finding and optimization, with environmental terms. Algorithmic knowledge acquired in this module is applied in algorithmic thinking exercises and visual code scripting.

Learning outcomes: Students will be able to:

 Understand computational mechanisms for creative processes of generating space and objects according to algorithmic rationales.

- Describe the form and the design parameters of spaces or objects in algorithmic terms and parametric models.
- Manage data structures in algorithmic design.
- Develop criteria and apply methods of form-finding of the designed object or space.
- Apply form optimization methods and environmental criteria in algorithmic design processes.

Subjects:

- Algorithmic design basics
- Parametric modelling and analysis tools (curves, surfaces, planes, vectors etc)
- Data management
- Interactive simulation and Form-finding
- Optimization
- Environmental analysis

Evaluation: Evaluation: Completion of written assignments during the academic semester which constitute a 40 percent of each student's grade, if a pass is obtained in the final or repetitive examination. Final exam grades constitute a 60 percent of the students' final course grade.

Prerequisites: There are no prerequisites for this CM.

IGD53 Geometric concepts in algorithmic design 2

CODE: IGD53 ECTS Credits: 10

Type of THES: Mandatory

Semester in which it is offered: Second (2nd)

Language of instruction: English

Purpose of the CM: The module is thematically linked to IGD51 and aims at deepening further geometric concepts found in algorithmic design. The aim is to familiarize students with the management of grids and patterns on 2d and 3d space, through the tool of algorithmic design. The aim is also to familiarize students with structures that fill the plane (paving), but also space (space filling). Finally, the aim of the module is the knowledge of elements of holography, to further intensify of students' perception of space, and on the other hand for the familiarization with the idea of releasing the form of the designed object from its mater.

Learning outcomes: Students will be able to:

- Know elements of the theory of flat decorations and the theory of polyhedrons.
- Manage patterns on curved surfaces.
- Transform grids onto curved surfaces.
- Design polyhedral structures.
- Understand holographic methods of releasing the form of the designed object from its mater.

Subjects:

- Introduction to Geometry in algorithmic design 2
- Projections, Mapping and morphing of grids and patterns Isoparametric Curves
- Elements of geometric group theory and its application on tessellations Tessellations and paneling
- Identical curved tiles

- Elements of Polyhedra theory Space filling technics
- Elements of digital Holography

Evaluation: Evaluation: Completion of written assignments during the academic semester which constitute a 40 percent of each student's grade, if a pass is obtained in the final or repetitive examination. Final exam grades constitute a 60 percent of the students' final course grade.

Prerequisites: Successful participation of the CM Geometric concepts in algorithmic design 1 (IGD51)

IGD54 Digital Fabrication Techniques

THE Code: IGD54 ECTS Credits: 10

Type of THES: Mandatory

Semester in which it is offered: Second (2nd)

Language of instruction: English

Purpose of the CM: The aim of this course module is to introduce students to the techniques of additive and subtractive digital manufacturing (milling with CNC routers, cutting with Laser cutting machines, and printing with 3D printers). The students understand the potential and limitations of these techniques, depending on the form of the digital model and the materiality of its construction. Through theory and practical application, students understand the workflow between digital design and digital manufacturing, the properties, and limitations of construction materials (wood, acrylic, metal, plastic, etc.), the limitations of digital prototyping machines, and the data that ought to be extracted from the two-dimensional or three-dimensional model for its fabrication.

Learning outcomes: Students will be able to:

- Understand the link between the process of digital design and digital fabrication.
- Understand the capabilities of the subtractive and additive techniques of digital fabrication, as well as their differences.
- Use subtractive and additive digital prototyping machines to construct an object described by a digital model.
- Choose the appropriate digital fabrication method according to the geometrical characteristics of the model, the properties of the construction material and the digital prototyping machines.
- Adapt the digital model according to the capabilities and limitations of digital prototyping machines.

Subjects:

- Introduction in digital fabrication CAD/CAM workflow
- Subtractive digital fabrication techniques (CNC milling)
- Additive digital fabrication techniques (3D printing)
- Machine protocols
- Material Computation
- File preparation and data export for fabrication (Projection, Nesting, Labelling, Datasheets)

Evaluation: Completion of written assignments during the academic semester which constitute a 40 percent of each student's grade, if a pass is obtained in the final or repetitive examination. Final exam grades constitute a 60 percent of the students' final course grade.

Prerequisites: Successful participation of the CM Introduction to algorithmic design (IGD52)

IGD55 Interactions: Algorithmic Sound, Image, Space

THE Code: IGD55 ECTS Credits: 10

Type of THES: Mandatory

Semester in which it is offered: Second (2nd)

Language of instruction: English

Purpose of the CM: The aim of this course module is to familiarize students with the methods of designing interactive systems, which might be either performances, audiovisual installations, spaces, or objects. Introduction to the practical use of sensors and actuation devices, programming interactive systems using microprocessors and computer code.

Learning outcomes: Students will be able to:

- Use the methods and parameters of designing interactive events, installations, spaces, or objects in an applied project
- Understand and apply the appropriate sensors and actuators in their interactive projects
- Understand and program interactive systems using specific microprocessors and computational code

Subject:

- Algorithmic design of soundscapes
- Corrective interventions of sound
- Parametric image management
- Image and video projection mapping
- The parameters of a performance design project
- Sensor data recording and actuation in physical space
- Prototyping of electrical circuits
- Human-Machine interface design
- Computer Vision
- Network communication for data exchange
- Programming of interactive systems with Arduino and Processing

Evaluation: Completion of written assignments during the academic semester which constitute a 40 percent of each student's grade, if a pass is obtained in the final or repetitive examination. Final exam grades constitute a 60 percent of the students' final course grade.

Prerequisites: Successful participation of the CM Introduction to algorithmic design (IGD52)

IGDDE Dissertation Thesis

CODE: IGDDE ECTS Credits: 30

Type of THES: Mandatory

Semester in which it is offered: Third (3rd)

Language of instruction: English

General Description:

Both a project that is relevant to the research work's subject and an individual text research paper on a subject that was developed in the thematic units of the previous semesters are required.

The general categories of subjects for Postgraduate Diploma Thesis determined by the Director of the postgraduate program after consultation with the Coordinators of the T.U. and are posted on the H.O.U. website, before the start of the period for submission of the relevant statement by the students.

Thematic fields are indicative and are linked to the specialized knowledge areas of the six Thematic Units of the IGD postgraduate program. The subjects proposed by the students may incorporate elements from two or more of these theme areas.

Examples include:

- 1. Algorithmic design of object or space
- 2. Geometrical solution of complex surfaces through algorithmic design
- 3. Algorithmic design of illusory spaces / objects
- 4. Design details to digital fabrication
- 5. Designing interactions between human or environment and object or space
- 6. Optimizations
- 7. Morphogenetic processes

Learning outcomes: Upon completion of their Postgraduate Diploma Thesis, students will be able to:

- organize synthetic qualitative and quantitative criteria in the design process;
- know the geometric principles that support algorithmic design;
- understand fundamental concepts and processes of algorithmic thinking for spatial design;
- organize synthetic qualitative and quantitative criteria in the design process;
- design using algorithms;
- have a fundamental understanding of digital manufacturing;
- have the ability to develop interactions between designed spaces or objects and people or the environment

General Regulation for the Preparation of Master's Theses in postgraduate programmes with a six-month duration **CMs**

For more information regarding the Specifications – Useful Material for writing Master's Theses and uploading a Thesis at the H.O.U. Repository, you can go to the Digital Training Area http://courses.eap.gr and especially to the Program of Studies section.

Prerequisites: The presentation of the Master's Thesis takes place after the successful completion of the program's CMs.

Sustainable Interior Design of Buildings

Objective – Description

The PSP aims to produce graduates with specialized, interdisciplinary knowledge on interior environments, the rational use of energy, energy conservation, as well as the health and well-being of the occupants (or the users).

Students will be trained in theoretical and applied approaches to sustainable interior design, learning strategies to reduce the consumption of energy, materials and resources, mitigate

the health risks posed by buildings, and improve user productivity. The Program also focuses on techniques of recording data regarding interior environments, in addition to the methods of analyzing and evaluating field data, their presentation, and the selection of viable techniques.

Learning outcomes

Upon successful completion of the PSP, students will be able to:

- Know the wider fields of indoor environmental quality, ventilation, thermal comfort, the building envelope, indoor air quality, lighting and acoustics.
- Develop high-level skills in the wider fields of Indoor Environmental Quality, ventilation, thermal comfort, the building envelope, indoor air quality, lighting and acoustics with focus in the analysis, recording and selection of appropriate actions to improve the health and well-being of the building users.
- Propose, plan, depict and document actions and ventilation systems, thermal comfort, building envelope, indoor air quality, lighting and acoustics systems by implementing modern techniques and technologies.
- Contribute meaningfully to the improvement of interior built environments

Develop the skills needed in the field of sustainable interior design, for both newly built and existing constructions, and balance strategic preferences that promote rational energy use, energy conservation, ventilation, heating, cooling and lighting system effectiveness, as well as the health and well-being of the occupants

Subject of the programme

- Sustainable Development Targets
- Basic parameters of Sustainable Development and interactions
- The impact of buildings and the built environment on the environmental problem
- Natural ventilation
- Mechanical ventilation
- Ventilation and interior environment quality with rational use of energy
- Thermal comfort
- Passive heating
- Natural and low-consumption building cooling
- Incorporation of RES on the building envelope
- Heat/cooling/cogeneration systems
- Distribution systems, terminal units
- Heat recovery/cooling systems,
- Automation
- Sources of chemical air pollution and indoor biological pollution
- Indoor air pollution reduction through design, management, and use of devices
- Exposure to interior space pollution
- Specialized interior space pollution applications
- Acoustics
- Lighting

ECTS Credits of the Program

The total number of ECTS required for the acquisition of the Master's degree is 90 ECTS.

Characterization of the Postgraduate Program

Master of Science (M.Sc.)

Classification according to the UNESCO Code ISCED-2011

Based on the level of study: 7

Classification according to the UNESCO Code ISCED-2013

Based on the field of Education and Training: 0788 Inter-disciplinary programmes and qualifications involving engineering, manufacturing and construction

0711 Chemical engineering and processes

0712 Environmental protection technology

0713 Electricity and energy

0719 Engineering and engineering trades not elsewhere classified

0731 Architecture and town planning

0732 Building and civil engineering

0739: Architecture and construction, not elsewhere classified

Language of instruction

The language of instruction of the program, as well as of the Master's thesis, is Greek.

Duration of studies

The minimum duration for the completion of the program. The minimum duration of study is one and a half (1 %) academic years, i.e. three (3) semesters.

Admission Requirements

The Post-Graduate Programme accepts applicants holding an academic higher education degree in a related subject, or of other subjects, provided that they also submit a formal Declaration of the candidate stating: "I hereby declare that I possess the necessary level of knowledge of the subjects covered in the Study Programme...... and I am able to meet its requirements".

The programme is offered in Greek.

The knowledge of a foreign language and good computer-Internet skills would be useful for the successful participation in the programme.

Note:

Holders of a degree or diploma of higher education means graduates of Greek Universities or Polytechnics or Higher School of Fine Arts or Higher School of Pedagogical and Technological Education or Higher Technological Educational Institutions (ATEI) or those who hold academically equivalent first cycle degrees from recognized foreign educational institutions with the degrees awarded by the Greek Higher Educational Institutions, in accordance with the provisions of article 304 of Law No. 4957/2022 (Government Gazette 141/21.07.2022, vol.)

Marking:

For the evaluation of the application to the Postgraduate Studies Programme, it will be examined whether the candidate's institution of study is or may be included in the National Register of Recognised Higher Education Institutions of Foreign Countries and whether the candidate's degree is or may be included in the National Register of Types of Degrees of Recognised Institutions of Foreign Countries.

The Hellenic Open University, if the degree is included in the list of article 307 of Law No. 4957/2022, must request a "Certificate of Place of Study", which is issued and sent by the foreign university. If the place of study or part of the studies is confirmed as the Greek territory, the degree is not recognized, unless the part of the studies that took place in the Greek territory is in a public higher education institution or in a recognized foreign educational institution within the meaning of paragraph b) of article 299 of Law No. 4957/2022.

Communication

Student Registry Department:

Tel.: +30 2610 367342 E-mail: igd@eap.gr

Student service desk:

Tel.: +30 2610367805 - 2610367806 - 2610367807 -2610367426 E-mail: info@eap.gr

Program structure

The PSP «Sustainable Interior Design of Buildings» is structured in three (3) academic semesters, which include six (6) Thematic Units (TUs), four (4) Thematic Laboratory Units (TLUs) and a Postgraduate Thesis.

The minimum period of study is three (3) academic semesters. The total number of credits (ECTS) required to obtain the Master's Degree is 90 ECTS.

, , ,	S .	
	1 st Semester	
EPK50	Introduction to sustainable design	(M ¹ , 10 ECTS)
EPK51	Natural and Mechanical Ventilation	(M, 10 ECTS)
EPK52	Building Envelope	(M, 10 ECTS)
	2 nd Semester	
EPK53	Heating - Cooling	(M, 10 ECTS)
EPK54	Sustainable Design of Interior Space Air Quality	(M, 10 ECTS)
EPK55	Research methods in the indoor environment	(M, 10 ECTS)
	3 rd Semester	
EPK60 (LCMs)	Measurements, analysis and interpretation in Building Acoustics	(E ² , 10 ECTS)
EPK61 (LCMs)	Measurements, analysis and interpretation in Building Lighting	(E, 10 ECTS)
EPK62 (LCMs)	Heat / cooling systems	(E, 10 ECTS)
EPK63 (LCMs)	Comfort Conditions and Energy performance of A Building	(E, 10 ECTS)
EPKDE	Postgraduate Thesis	(M, 10 ECTS)
	Total:	90 ECTS

Notes:

M¹: Mandatory E²: Elective

Instructions for the selection of TUs

You can choose from one (1) to three (3) TU/TLU for each semester (30 ECTS).

The selection of the TU and TLU is suggested to be followed in the order that the program structure follows.

During the TU enrollment process, the TU of the previous semester it is suggested to be completed first and then the TU of the next semester should be selected.

The preparation of the Postgraduate Thesis (EPK DE) presupposes the successful attendance of five (5) TUs and the TLUs of 1st and 2nd semester.

The viva exam of the Postgraduate Thesis presupposes the successful completion of all TUs and TLUs of the Programme.

The minimum duration of study in the Master's Program is three (3) academic semesters. To complete the program in three (3) academic semesters, the successful completion of all TUs and TLUs must completed in each semester (30 ECTS) along with the Postgraduate Thesis.

In order to obtain the Master's degree, the successful completion of five (5) TUs, three (3) TLUs as well as the successful completion and presentation of the Postgraduate Thesis, is mandatory.

Course Module Evaluation EPK50, EPK51, EPK52, EPK54, EPK55:

- **a1**. Two (2) Short Written Assignments (SWA) that contribute to the final grade with a weight equal to 10% each of them.
- **a2**. One (1) Written Assignment (WA) which contributes to the final grade with a weight equal to 20%.

The grade of the written assignments (SWA & WA) is secured when a grade equal to or above the passing grade (≥5) in the final exam or resit is achieved only.

a3. Final exam or resit (FE) contribute to the final grade with a weight equal to 60%.

The **Final Grade** of each Thematic Unit on the scale of 1 to 10 is calculated as:

Final Grade = $(SWA1\times0,1) + (SWA2\times0,1) + (WA\times0,2) + (FE\times0,6)$

Establishment of participation right in the final exam:

Participation in the final examination will be allowed, if:

- 1. the sum of the grades of the aforementioned assignments (see a1 and a2) is equal to, or greater than 50% of the assigned grading scale, i.e. at least 20 points out of 100, based on the weights mentioned in points a1 and a2,
- 2. at least 2 of the 3 should be submitted.

SWA & WA grade on the scale of 1 to 100			
SWA1	SWA2	WA	Minimum grade that is required
(10%)	(10%)	(20%)	for participation in final exams
SWA1 × 1	SWA2 × 1	WA × 2	20/100

Course Module Evaluation EPK53

- **a1**. Two (2) Written Assignments (WA) that contribute to the final grade with a weight equal to 15% each of them.
- **a2**. One (1) Written Assignment (WA) which contributes to the final grade with a weight equal to 10%.

The grade of the written assignments (WA) is secured when a grade equal to or above the passing grade (\geq 5) in the final exam or resit is achieved only.

a3. Final exam or resit (FE) contribute to the final grade with a weight equal to 60%.

The **Final Grade** of each Thematic Unit on the scale of 1 to 10 is calculated as: **Final Grade** = $(WA1\times0,15) + (WA2\times0,15) + (WA3\times0,1) + (FE\times0,6)$

Establishment of participation right in the final exam:

Participation in the final examination will be allowed, if:

- 1. the sum of the grades of the aforementioned assignments (see a1 and a2) is equal to, or greater than 50% of the assigned grading scale, i.e. at least 20 points out of 100, based on the weights mentioned in points a1 and a2,
- 2. at least 2 of the 3 should be submitted.

WA grade on the scale of 1 to 100			
WA1	WA2	WA3	Minimum grade that is required
(15%)	(15%)	(10%)	for participation in final exams
WA1 × 1,5	WA2 × 1,5	WA3 × 1	20/100

Laboratory Course Module Evaluation EPK60, EPK62

a1. Two (2) Written Assignments (WA) that contribute to the final grade with a weight equal to 20% each of them.

The grade of the written assignments (WA) is secured when a grade equal to or above the passing grade (≥5) in the final exam or resit is achieved only.

a2. Final exam or resit (FE) contribute to the final grade with a weight equal to 60%.

The average of the grades of all remote activities - based on the weighting factors mentioned in point a1 above - must be at least equal to or above five (≥5.0).

However, the overall grading is activated only with the timely, based on the schedule, submission of both educational activities of the semester, and not only with the participation in the final exam, otherwise the L.C.M. is considered incomplete.

The **Final Grade** of each Laboratory Course Module on the scale of 1 to 10 is calculated as: **Final Grade** = $(WA\times0,2) + (WA\times0,2) + (FE\times0,6)$

Establishment of participation right in the final exam (written exams or handing in a final written assignment)

The right to participate in the Final Examination (written exams or delivery of a final written work) is granted if the student obtains an average grade of ≥5.0 (five) from a total of two (2) distance learning activities

Laboratory Course Module Evaluation EPK61

- **a1.** Two (2) Written Assignments (WA) that contribute to the final grade with a weight equal to 20% each of them.
- **a2**. Final exam contributes to the final grade of the L.C.M. with a weight equal to 60%. A final exam means taking part in written exams or handing in a final written assignment. Each distance learning activity, as well as the final exam, are evaluated on a scale of ten (10). The

average of the grades of all remote activities - based on the weighting factors mentioned in point a1 above - must be at least equal to or above five (≥5.0).

However, overall grading is only enabled:

- (a) with the timely submission, based on the schedule, of both educational activities of the semester,
- (b) by participating in the live workshop and not only by participating in the final exam, otherwise L.C.M. is considered incomplete.

The Final Grade of each L.C.M., on a scale of 10, is calculated as follows: Final grade of L.C.M. = $(WA1\times0.2) + (WA2\times0.2) + (FE\times0.6)$

Establishment of participation right in the final exam (written exams or handing in a final written assignment):

The right to participate in the Final Examination (written exams or delivery of a final written work) is granted if the student:

- 1. accumulate an average grade of \geq 5.0 (five) from a total of two (2) distance learning activities,
- 2. participate in the live workshop.

Laboratory Course Module Evaluation EPK63:

a1. One (1) Written Assignment (WA) that contribute to the final grade with a weight equal to 15%.

One (1) Written Assignment (WA) that contribute to the final grade with a weight equal to 25%.

The grade of the written assignments (WA) is secured when a grade equal to or above the passing grade (≥5) in the final exam or resit is achieved only.

a2. Final exam or resit (FE) contribute to the final grade with a weight equal to 60%.

The average of the grades of all remote activities - based on the weighting factors mentioned in point a1 above - must be at least equal to or above five (≥5.0).

However, the overall grading is activated only with the timely, based on the schedule, submission of both educational activities of the semester, and not only with the participation in the final exam, otherwise the L.C.M. is considered incomplete.

The **Final Grade** of each Laboratory Course Module on the scale of 1 to 10 is calculated as: **Final Grade** = $(WA\times0,15) + (WA\times0,25) + (FE\times0,6)$

Establishment of participation right in the final exam (written exams or handing in a final written assignment)

The right to participate in the Final Examination (written exams or delivery of a final written work) is granted if the student obtains an average grade of ≥5.0 (five) from a total of two (2) distance learning activities

EPK50 Introduction to sustainable design

Code: EPK50 ECTS Credits: 10 Type: Mandatory

Semester in which it is offered: First (1st)

Language of instruction: Greek

Objective - General Description: Thematic Unit EPK50 aims to present the fundamental principles of sustainable design and introduce students to concepts related to interior built environment quality, the targets and basic parameters of Sustainable Development, the role of buildings and the built environment in the energy and environmental problem, the current legal framework, and the parameters that dictate the quality of interior environments.

Learning Outcomes:

Upon successful completion of the Thematic Unit, students will be able to:

- Understand the basic principles of sustainability and sustainable design
- Understand the role of buildings in the energy and environmental problem
- Know the basic international, European and national objectives, basic legislation and regulations, and sources for monitoring future developments
- Identify the parameters that dictate the quality of interior environments
- Understand the interaction of comfort parameters with the energy performance of buildings and the operation of installations

TU Subject Matter:

- The energy and environmental problem,
- Sustainable buildings and built environment,
- International, European and national objectives,
- Legislation and Regulations (International / European / National Legislation & Regulations, Future developments, EPBD, EPBR, Green Legislation, 2030 and 2050 Targets, etc),
- Energy balance of buildings,
- Building envelopes and facilities,
- Comfort and air quality parameters,
- Parameter interdependence and interaction

Teaching Method: distance learning using the HOU's e-Learning Platform and conducting Group Counselling Meetings (tele-GCM).

EPK51 Natural and Mechanical Ventilation

Code: EPK51 ECTS Credits: 10 Type: Mandatory

Semester in which it is offered: First (1st)

Language of instruction: Greek

Objective - General Description: Thematic Unit EPK51 aims to present the basic principles of design in relation to the use of natural and mechanical ventilation techniques and systems in buildings, to improve indoor environmental conditions with rational use of energy. In

particular, the unit aims to provide students with knowledge regarding ventilation requirements and regulations, functional principles, special systems and specialized calculations relating to natural ventilation, as well as the functional principles, the anatomy of local and central mechanical installations, automations, rational energy use, and basic calculations related to ventilation requirements and ventilation and interior environment quality.

Learning Outcomes: Upon successful completion of the Thematic Unit, students will be able to:

- calculate ventilation requirements depending on the use of indoor spaces in accordance with current regulations,
- understand the basic parameters and processes that impact natural ventilation,
- calculate various design parameters and the level of natural ventilation through the application of various methodologies,
- recognize the main equipment of mechanical ventilation installations,
- evaluate various parameters in the design of mechanical ventilation installations,
- identify appropriate technical mechanical ventilation solutions,
- calculate various design and function parameters,
- know examples of ventilation applications in various different building types.

TU Subject Matter:

- Ventilation requirements and regulations
- Natural ventilation Processes, unilateral and transverse ventilation, special systems,
 calculation methods and measurement techniques
- Mechanical ventilation Equipment, installations, networks, local and central installations, energy recovery, filtration, fans, air distribution and circulation
- Ventilation and interior environment quality with rational use of energy, Minimum requirements, Regulations
- Installation examples, Measurements

Teaching Method: distance learning using the HOU's e-Learning Platform and conducting Group Counselling Meetings (tele-GCM).

EPK52 Building Envelope

Code: EPK52 ECTS Credits: 10 Type: Mandatory

Semester in which it is offered: First (1st)

Language of instruction: Greek

Objective - General Description: The TU aims to provide students with knowledge on building envelopes as the boundaries for energy exchanges between interior and exterior environments, but also as a correlation parameter for building ventilation, heating and cooling, lighting and acoustics systems.

Learning Outcomes:

Upon successful completion of the T.U., students will be able to:

 Understand the interactions of a building with its exterior environment and document measures to improve them

- Understand the basic principles of building placement in space, and the optimal orientation depending on building use
- Understand the dynamic function of a building through the day and over seasons, and its significance depending on use
- Estimate the thermal comfort in interior built spaces with model indicators (PMV)
- Calculate the thermal insulation properties of transparent and opaque building elements
- Understand and calculate thermal bridges in building envelopes and propose effective mitigation measures
- Understand the impact of dynamic envelope characteristics and calculate the corresponding thermal inertia and time lag indicators
- Select the most appropriate combination of materials and building element layering to serve the particular interior environment quality requirements of a building, depending on use and heating type
- Calculate solar gain from simple passive solar systems
- Calculate and optimize the energy efficiency of shading devices
- Propose documented solutions for natural heating, cooling, ventilation and lighting techniques and systems
- Combine the individual elements of an envelope in order to best serve the demand for quality of interior conditions, depending on building use and season

TU Subject Matter:

- Buildings and micro-climate
- Methodology for calculating thermal insulation protection of buildings
- Calculation of dynamic structural element attributes
- Thermal comfort in interior spaces in accordance with international standards
- Passive heating
- Natural and low-consumption building cooling
- Incorporation of RES in the building envelope

Teaching Method: distance learning using the HOU's e-Learning Platform and conducting Group Counselling Meetings (tele-GCM).

EPK53 Heating - Cooling

Code: EPK53
ECTS Credits: 10
Type: Mandatory

Semester in which it is offered: Second (2nd)

Language of instruction: Greek

Objective - General Description: The TU aims to provide students with the basics of design, evaluation and energy upgrading of heating/cooling systems to achieve Nearly Zero Energy Building levels (nZEB) or Net Zero Energy Building levels (NZEB). The TU will cover heating, cooling systems and cogeneration systems, hot water boilers (Gas-fired, liquid fuel, biomass), heat pumps (Air/Air, Geothermal, High-Temperature Air/Water), Organic working fluid chillers, Absorption or Adsorption chillers, Cogeneration / Tri-generation units, passive and hybrid cooling systems (e.g. ground and evaporative cooling, ceiling fans), solar assisted systems (Solar Thermal, Solar Cooling, PV, etc.). Furthermore, the TU will cover topics on

distribution systems, terminal units, hot / cold water networks (underfloor, wall-mounted hydronic, classic single-pipe, two-pipe, three-pipe), Air duct networks, VRV direct expansion networks, district heating / cooling, Fan coil-type terminal units, radiators etc. as well as heat recovery / cooling systems, composite waste heat utilization systems for heating / cooling and electricity production (ORC circuits), Energy storage systems. Finally, the corresponding automations with compensation, three-way/four-way, control valves, complex systems at building level (BMS, BEMS) will be analyzed.

Learning Outcomes:

Upon successful completion of the T.U., students will be able to:

- Recognize the structure of the various different Heating and/or Cooling systems, as well
 as the main components that make them up (production system, distribution system,
 terminal unit system)
- Describe in detail modern and innovative heating and/or cooling and/or electricity producing systems, with particular emphasis on the incorporation of Renewable Energy Sources.
- Analyze energy recovery (heat / cooling) possibilities when designing new building units or renovating / energy upgrading existing installations - building units.
- Analyze the capabilities of automation / regulation / monitoring systems in achieving and maintaining the desired comfort conditions per zone of use and building unit, as well as improve the energy efficiency of systems in variable interior and/or exterior environmental conditions.
- Understand the composition, basic structure, requirements (spatial and otherwise), advantages and disadvantages of heating/cooling/electricity systems evaluated or proposed during the planning, design and implementation phases of new buildings and the renovation of existing installations.
- Participate in a functional, efficient and modern interdisciplinary construction project design and management team

TU Subject Matter:

- Heating, Cooling and Cogeneration Systems, Hot Water Boilers, Heat Pumps, Coolers,
 Cogeneration units
- Hybrid Systems using Renewable Energy Sources
- Distribution systems, terminal units, hot-cold water, air, direct distribution VRV networks
- District heating / cooling, Fan coil-type terminal units, etc.
- Heat recovery / cooling systems, composite waste heat utilization systems for heating
 / cooling and electricity production, Energy storage systems
- Automation

Teaching Method: distance learning using the HOU's e-Learning Platform and conducting Group Counselling Meetings (tele-GCM).

EPK54 Sustainable Design of Interior Space Air Quality

Code: EPK54
ECTS Credits: 10
Type: Mandatory

Semester in which it is offered: Second (2nd)

Language of instruction: Greek

Objective – **General Description:** The module aims to provide students with the necessary knowledge regarding sources of chemical and biological air pollution of interior spaces, the relevant legislation, interactions between interior and exterior air and the impact of air pollution on human health. Finally, lessons will focus on certain special applications, such as radon, formaldehyde, smoking, school and hospital pollution, etc.

This knowledge will then be applied to internal air pollution measurements for: CO/CO2, particulate matter, specific pollutants etc.

Learning Outcomes: Upon successful completion of the module, students will be able to:

- Understand the contribution and identify sources of chemical and biological pollution of air in interior spaces
- Interpret and apply the relevant legislation,
- Understand the interactions between interior and exterior air and the impact of pollution on human health.
- Understand the principles of interior space design and the systems and methods used to limit pollution
- Understand the spectrum of real conditions through the study of specific applications, such as compounds (radon, formaldehyde etc.) specific sources/activities (smoking, cleaning materials, furniture, plants, animals, cooking, fireplaces etc.) or specific spaces (schools, hospitals, restaurants, hairdressing salons, industrial and livestock facilities, gyms, etc.) as well as a specific application related to COVID-19.
- Record interior space air pollution levels and analyze the relevant data, in relation to space: ventilation, configuration, materials, ongoing processes etc.

Subject Matter:

- Sources of chemical air pollution and indoor biological pollution
- Design, management and use of devices to reduce pollution
- Exposure to interior space pollution and specialized interior space pollution applications
- Interior space pollution measurements

Evaluation: Completion of written assignments during the academic semester which constitute a 40 percent of each student's grade, if a pass is obtained in the final or repetitive examination. Final exam grades constitute a 60 percent of the students' final course grade.

Teaching Method: Distance learning using the HOU's e-Learning Platform and conducting Group Counselling Meetings (tele-GCM).

EPK55 Research methods in the indoor environment

Code: EPK55 ECTS Credits: 10 Type: Mandatory

Semester in which it is offered: Second (2nd)

Language of instruction: Greek

Objective - **General Description:** The TU aims to a) train students in the field research procedures and familiarize them with the relevant literature on the field of the indoor environment so as to prepare them for independent study in this field and b) prepare them for the research field of the diploma thesis they will prepare as part of their participation in the PSP. Students will select a diploma thesis title from a list of proposed titles, prepare a

literature overview, document the gaps in current research, pose research questions and propose the methodology they will use to answer these questions in the field of the indoor environment.

Learning Outcomes: Upon successful completion of the T.U., students will be able to:

- Critically analyze existing knowledge on topics of the indoor environment
- Prepare a literature overview and critically analyze current knowledge in topics related to the indoor environment
- Describe, analyze and interpret phenomena related to ventilation, acoustics, heating, air, lighting and cooling quality etc., and propose methodologies to answer research questions on these topics
- Formulate new theoretical and methodological approaches, technical instruments or other innovations in the field of the indoor environment
- Develop a comprehensive, documented plan for a study on a topic related to the indoor environment

TU Subject Matter:

- Overview and synthesis of existing literature on topics of ventilation, acoustics, heatingcooling, built environment, air and lighting quality
- Research methodology on topics of ventilation, acoustics, heating-cooling, built environment, air and lighting quality

Teaching Method: distance learning using the HOU's e-Learning Platform and conducting Group Counselling Meetings (tele-GCM).

EPK60 Measurements, analysis and interpretation in Building Acoustics

Code: EPK60 (T.L.U.)
ECTS Credits: 10
Type: Elective

Semester in which it is offered: Third (3rd)

Language of instruction: Greek

Objective - General Description: Participants in this Thematic Laboratory Unit will learn to use professional measurement tools to prepare a comprehensive building acoustic study (whether under construction or existing).

The theoretical part of the unit provides students with the tools to implement the most recent European regulations on acoustics and interior acoustic comfort for residential and office spaces, education buildings, commercial spaces, cultural spaces etc. It is divided into 2 sections:

- Room acoustics. The TLU will discuss the concepts of a room's reverberation durations, the absorption coefficients of material - alpha Sabine, the equivalent sound absorption surface, etc.
- Acoustics and building applications. This section will analyze topics of sound insulation between the different spaces of a building. Lessons will focus on the concepts of Noise reduction index of material and in the calculation of airborne and impact sound insulation, as well as on the corresponding construction details
- Students will become acquainted with acoustic measurements, practicing them on the following:
- Room acoustics, noise reduction in a room, intelligibility criteria

- Airborne and impact sound insulation,
- Protection against noise from installations,
- Acoustic certification of building materials
- Workplace noise measurement.
- Use of software and applications
- Furthermore, lessons will also focus on the European and Greek regulations for acoustics measurements

Learning Outcomes: Upon successful completion of the Thematic Laboratory Unit, students will be able to:

- Carry out an acoustic study of a building
- Analyze reverberation times in accordance with the Sabine / Eyring formulas for enclosed spaces (absorption coefficient, equivalent sound absorbing surface)
- Analyze sound insulation criteria for airborne and impact noises (Dnt,w and LnT,w)
- Select building materials based on their acoustic properties (Alpha Sabine, Rw weighted sound reduction index)
- Design the acoustic layout of an enclosed space.
- Design the construction details for the incorporation of acoustic materials in their projects.
- Produce documented scientific studies to present research results
- Measure in real time reverberation times and acoustics criteria according to ISO
- Measure in real time insulation criteria for airborne and impact noises (Dnt,w and LnT,w)
- Measure in real time noise from installations
- Produce documented scientific studies to present the results of acoustics criteria measurement research

TLU Subject Matter:

- Building acoustics Applications: Sound, sound waves, sound perception and units (dB(A), Hz) and measurement receivers (Lp, Leq, Lxx - Statistical Sound Levels)
- Environmental noise, urban forms and building envelops, sound propagation in enclosed spaces
- Sound insulation against airborne and impact noises, principles and construction details and noise from installations (ventilation, air conditioning, heating, elevators)
- Software, uses and applications
- Sound behavior in enclosed spaces, spatial acoustics, criteria, sound-absorption devices, sound insulation, intelligibility criteria
- Understanding of interior space acoustics studies
- Chambers for measuring sound absorption coefficients of materials and Rw weighted sound reduction index for materials
- Workplace noise measurement: protocols, noise exposure limits, European regulations, worker protection

Teaching and Learning Methods-Evaluation-Teaching Method: Interactive lectures, combining theoretical knowledge and examples. Concurrent applied exercises with field applications. Students are in constant dialog with the educator. Lessons are taught remotely, by Computer.

Use of Information and Communications Technology: Equipment: sonometres, speakers, microphones, calibrated noise source, measurement software, mobile phones with free applications.

EPK61 Measurements, analysis and interpretation in Building Lighting

Code: EPK61 (T.L.U.)
ECTS Credits: 10
Type: Elective

Semester in which it is offered: Third (3rd)

Language of instruction: Greek

Objective - General Description: The TLU aims to:

- Have students apply their theoretical knowledge of the field of lighting in interior lighting projects which improve quality of life, enhance interior spaces, increase productivity and ensure comfort and safety
- Introduce students to the process of evaluation, through calculations and measurements, of a building's lighting system
- Introduce students to the process of checking compliance of lighting systems with international standards, regulations through a measurement procedure
- Teach students how to upgrade systems according to the principles of sustainable and human-centered lighting

Learning Outcomes:

Upon successful completion of the Thematic Laboratory Unit, students will be able to:

- Identify the photometric quantities required in the interior lighting of buildings and the corresponding requirements dictated by the standards and regulations of the measurement process
- Recognize the corresponding lighting quantities in a lighting study in order to be inspected through the measurement process
- Document the lighting needs of interior spaces and compare them with those mandated by current standards and existing lighting systems,
- Prepare light measurement and standard compliance procedures,
- Analyze lighting measurements, compare them with lighting application studies, and perform evaluations
- Utilize measurements to prepare the appropriate technical solutions and propose the most effective lighting systems or relevant actions
- Promote the principles of sustainable, human-centered lighting

TLU Subject Matter:

- Lighting measurements and identification of the corresponding quantities required in interior spaces
- Lighting installation measurements
- Compliance with regulations and checking of results
- Evaluation of a building's lighting systems with measurements
- Proposals for the upgrading of lighting systems according to the principles of sustainable, human-centered lighting

Teaching and Learning Methods-Evaluation-Teaching Method: Interactive lectures, combining theoretical knowledge and examples. Concurrent applied exercises with field

applications. Students are in constant dialog with the educator. Lessons are taught remotely, by Computer.

Use of Information and Communications Technology: Use of specialized light measurement equipment. Use of computers. Student-educator communication through the lesson platform and via e-mail

Teaching Organization: The TLU is organized around a) Lectures, b) Seminars, c) Laboratory exercise, and d) Field Exercise.

Laboratory Facilities: The coordinator will select the location of the lighting system to be examined. Students will be provided with portable equipment. Photometric quantity measurements of lighting installations will be carried out in the laboratory facilities of the School of Applied Arts and Sustainable Design, which possesses the necessary mobile equipment to carry out the exercises. Laboratory equipment belonging to the Lighting Design workshop may be utilized.

EPK62 Heat / cooling systems

Code: EPK62 (T.L.U.)
ECTS Credits: 10
Type: Elective

Semester in which it is offered: Third (3rd)

Language of instruction: Greek

T.L.U. Objective - Description: This elective TLU aims to introduce students to the principles of technical quantity measurement, with emphasis on quantities related to heating and cooling systems and the use of the resulting data in the everyday life and work of engineers / designers / users.

Learning Outcomes:

Upon successful completion of the Thematic Laboratory Unit, students will be able to:

- Understand the utility of a reliable methodology to carry out, record and evaluate reliable experimental data in real installations.
- Utilize measurements in the verification, monitoring and calibration of the input parameters of advanced simulation / design software used at both the building level and at the level of individual Heating and/or Cooling Systems.
- Manage gaps in data regarding consumption / yield / real effective power level in existing installations to evaluate energy upgrade scenarios and bypass this obstacle to the entry into the market and use of innovative financial instruments such as energy service contracts.
- Evaluate (value, error, measurement uncertainty) and perform routine measurement
 of technical quantities, such as measuring air flow in ducts, surface temperature,
 humidity, pressure, exhaust gas quality, fuel flowrate, calculate energy flow using
 primary data/measurements, evaluate system status (power etc.) through
 measurement data, etc. with the use of scientific equipment

Subject Matter:

- Measurements of heat production systems
- Measurements of cooling production systems

Teaching and Learning Methods-Evaluation-Teaching Method: Interactive lectures, combining theoretical knowledge and examples. Concurrent applied exercises with field

applications. Students are in constant dialog with the educator. Lessons are taught remotely, by Computer.

Use of Information and Communications Technology: Use of the appropriate equipment to measure surface temperature, humidity, pressure, exhaust gas quality. Student-educator communication through the lesson platform and via e-mail.

Teaching Organization: Lectures with theory and practical exercises. The lectures are followed by laboratory exercises meant to enrich the content of the former and supplement the knowledge comprehension and acquiring process. Supplementary field exercise that will contribute to skill development. Preparation of written assignment.

Laboratory Facilities: Student attendance of field activities is mandatory. The School of Applied Arts and Sustainable design possesses the necessary equipment to perform the exercises. Laboratory equipment belonging to the Technology and Environmental and Energy Policy Laboratory may be utilized.

EPK63 Comfort Conditions and Energy performance of A Building

Code: EPK63 (TLU) ECTS Credits: 10 Type: Elective

Semester in which it is offered: Third (3rd)

Language of instruction: Greek

TLU Objective - Description: The (TLU) aims to:

- Compile and synthesize data on the technical installations, construction, function and internal conditions of a residential or professional building
- Evaluate the interior environment in combination with the actual and theoretical energy behavior of a building, to identify potential issues
- Train students in the preparation of proposals to improve a building's interior environmental quality and energy efficiency

Learning Outcomes:

Upon successful completion of the Thematic Laboratory Unit, students will be able to:

- Identify and familiarize with the main technical installations and attributes of a building
- Collect data on the comfort and function conditions of a building
- Calculate a building's energy intensiveness indicators
- Analyze and synthesize information and data drawn from various sources and processes
- Understand the requirements set forth in Regulations
- Adapt the theoretical and actual energy behavior of a building
- Evaluate the prevalent conditions in a building as well as its energy behavior
- Propose building comfort condition and energy behavior improvements
- Prepare a technical report

Subject Matter:

- Assessment of indoor comfort conditions and building performance
- Calculation of actual and theoretical energy and carbon use intensities of a building
- Actions to improve the comfort conditions (thermal, visual, etc.) and the energy performance of the building

Teaching and Learning Methods-Evaluation-Teaching Method: Digital technical report that will present all data, processes, depictions of the current situation, results of calculation and analysis, synthesis of proposals, with detailed calculation results in appendixes.

Use of Information and Communications Technology: Use of the computer tool TEE-EPBR for those who wish to and have experience in using it. Dissemination of an electronic survey for data collection. Use of Excel spreadsheets to prepare graphs and electronic word processing software to prepare technical reports.

Teaching Organization: The course is interactive and will be taught remotely, with the educator presenting parts of the syllabus through the software and students will be able to share and solve their questions. Lectures, Seminars, Field Exercise (in-person).

Laboratory Facilities: Part of the work will involve field work that will be carried out at an actual building chosen by the student, on the provision that they will have unobstructed access to its installations and the necessary data is available. For reasons of expediency, students are encouraged to select their house/apartment building or another tertiary-sector building (e.g. Office/workplace building) with unobstructed access to its installations and tenants/users, for which there is available data (e.g. plans, energy consumption etc).

EPKDE Postgraduate Thesis

CODE: EPKDE ECTS Credits: 10

Type of THES: Mandatory

Semester in which it is offered: Third (3rd)

Language of instruction: Greek

General Description: The Master's Thesis will be a field of application of the knowledge acquired in the TUs and TLUs of PSP and will aim at an overall design project that will be compatible with the principles of sustainable design of the internal environment of buildings. The Master's Thesis is subject to the general regulation of the Master's Thesis of the HOU with CMs of six-month duration

General Regulation for the Preparation of Master's Theses in postgraduate programmes with a six-month duration

For more information regarding the Specifications – Useful Material for writing Master's Theses and uploading a Thesis at the H.O.U. Repository, you can go to the Digital Training Area http://courses.eap.gr and especially to the Program of Studies section.

Learning Outcomes:

After the end of the Postgraduate Thesis the students will be able to:

- Critically analyze existing knowledge on topics of the indoor environment
- Prepare a literature overview and critically analyze current knowledge in topics related to the indoor environment
- Describe, analyze and interpret phenomena related to ventilation, acoustics, heating, air, lighting and cooling quality etc., and propose methodologies to answer research questions on these topics
- Formulate new theoretical and methodological approaches, technical instruments or other innovations in the field of the indoor environment

 Develop a comprehensive, documented plan for a study on a topic related to the indoor environment

Prerequisites: The presentation of the Postgraduate Thesis takes place after the successful completion of the program's T.U. & T.L.U..

Design of Visual Effects and Animation

Subject of the Programme: Design of Visual Effects and animation

- Two-dimensional and three-dimensional modeling
- History of animation visual effects
- Basic principles of spatial planning
- Animation visual effects
- 3d animation / Tracking / MOCAP
- Development of Audiovisual Media Production
- Photogrammetry

Objective

The Master's Program "Design of Visual Effects and animation" aims to provide students with knowledge for their creative participation in various audio-visual and film productions, on a theoretical as well as on a practical level. This master's program provides a qualitative master's specialization, with the focus on subjects relating to the visual effects for the moving image and aided with related contemporary technological tools.

Learning outcomes

Upon completion of the PMS SOK students will be able to document and participate with a specific creative role in working groups creating visual effects.

Upon completion of their studies, students will have acquired specialized knowledge to:

- leverage new technology tools to create animation visual effects.
- delve into the history of visual effects through the course of cinema.
- use various software and digital tools to create 2D and 3D special effects models.
- design and control the movement in an animation project.
- include in the production file for financing, the visual effects of the moving image.

ECTS Credits of the Program

The total number of ECTS required for the acquisition of the Master's degree is 90 ECTS.

Characterization of the Postgraduate Program

Master of Arts (MA)

Classification according to the UNESCO Code ISCED-2011

Based on the level of study: 7

Classification according to the UNESCO Code ISCED-2013

Based on the field of Education and Training: 0288 (Inter-disciplinary programmes and qualifications involving arts and humanities)

- 0114 Teacher training with subject specialisation
- 0210: Arts, not further defined
- 0211: Audio-visual techniques and media production
- 0212 Interior design
- 0212 Industrial design (artistic)
- 0212 Stage designing
- 0213 Fine arts
- 0213 Painting (art)
- 0213 Sculpture
- 0219: Arts, not elsewhere classified
- 0220: Humanities (except languages), not further defined
- 0232: Literature and linguistics
- 0611 Computer use
- 0612 Computer media applications
- 0619 Information and Communication Technologies (ICTs) not elsewhere classified
- 0688 Information and Communication Technologies (ICTs), inter-disciplinary programmes

Language of instruction

The language of instruction of the program, as well as of the Master's thesis, is Greek.

Duration of studies

The minimum duration for the completion of the program. The minimum duration of study is one and a half (1 %) academic years, i.e. three (3) semesters.

Admission Requirements

The Post-Graduate Programme accepts applicants holding an academic higher education degree in a related subject, or of other subjects, provided that they also submit a formal Declaration of the candidate stating: "I hereby declare that I possess the necessary level of knowledge of the subjects covered in the Study Programme....... and I am able to meet its requirements".

The programme is offered in Greek.

The knowledge of a foreign language and good computer-Internet skills would be useful for the successful participation in the programme.

Note:

Holders of a degree or diploma of higher education means graduates of Greek Universities or Polytechnics or Higher School of Fine Arts or Higher School of Pedagogical and Technological Education or Higher Technological Educational Institutions (ATEI) or those who hold academically equivalent first cycle degrees from recognized foreign educational institutions with the degrees awarded by the Greek Higher Educational Institutions, in accordance with the provisions of article 304 of Law No. 4957/2022 (Government Gazette 141/21.07.2022, vol.)

Marking:

For the evaluation of the application to the Postgraduate Studies Programme, it will be examined whether the candidate's institution of study is or may be included in the National Register of Recognised Higher Education Institutions of Foreign Countries and whether the

candidate's degree is or may be included in the National Register of Types of Degrees of Recognised Institutions of Foreign Countries.

The Hellenic Open University, if the degree is included in the list of article 307 of Law No. 4957/2022, must request a "Certificate of Place of Study", which is issued and sent by the foreign university. If the place of study or part of the studies is confirmed as the Greek territory, the degree is not recognized, unless the part of the studies that took place in the Greek territory is in a public higher education institution or in a recognized foreign educational institution within the meaning of paragraph b) of article 299 of Law No. 4957/2022.

Communication

Student Registry Department:

Tel.: +30 2610 367312 E-mail: sok@eap.gr

Student service desk:

Tel.: +30 2610367805 - 2610367806 - 2610367807 -2610367426 E-mail: info@eap.gr

Program structure

The Master of Arts "Visual Effects and Animation Design" is structured in three (3) academic semesters, which include two (2) compulsory Course Modules, five (5) compulsory Laboratory Course Modules and a Master's Thesis. The minimum period of study is three (3) academic semesters. The total number of credits (ECTS) required to obtain the Master's Degree (M.D.E.) is 90 ECTS.

In detail, the structure of the MA is the following:

1 semester		
SOK50	Visual effects history	(C ¹ , 10 ECTS)
SOK1 L.C.M.	Basic principles of the moving image	(C, 10 ECTS)
ATM2 L.C.M.	Introduction to digital design	(C, 10 ECTS)
2° semester		
SOK60	Production development for funding	(C, 10 ECTS)
ATM3 L.C.M.	Advanced Modeling and Photorealism	(Y, 10 ECTS)
SOK2 L.C.M.	Advanced animation	(C, 10 ECTS)
3° semester		
ATM4 L.C.M.	Photogrammetry	(C, 10 ECTS)
SOKDE	Master Diploma thesis	(C, 20 ECTS)
	Total:	90 ECTS

Note:

C1: Compulsory

Instructions for the selection of CMs.

You can choose from one (1) to three (3) CM/LCM for each semester (30 ECTS).

The selection of the CM and LCM is suggested to be followed in the order that the program structure follows.

During the CM enrollment process, the CM of the previous semester it is suggested to be completed first and then the CM of the next semester should be selected.

For example, students who have successfully completed one (1) CM from the first-semester and wish to select three (3) second-semester CM/LCMmust select the two (2) remaining first-semester CM/LCM and then one (1) from the second semester, etc.

The preparation of the Master Diploma Thesis (SOK DE) presupposes the successful attendance of two (2) CMs and four (4) LCMs of 1st and 2nd semester.

The viva exam of the Master's thesis presupposes the successful completion of all TUs and LCMs of the Program.

In order to obtain the Master's degree, the successful completion of two (2) CMs, five(3) LCMs as well as the successful completion and presentation of the Master's thesis, is mandatory.

Course Module Evaluation (LCM SOK50 & SOK60):

- **a1**. Two (2) Short Written Assignments (SWA) that contribute to the final grade with a weight equal to 10% each of them.
- **a2**. One (1) Written Assignment (WA) which contributes to the final grade with a weight equal to 20%.

The grade of the written assignments (SWA & WA) is secured when a grade equal to or above the passing grade (≥5) in the final exam or resit is achieved only.

a3. Final exam or resit (FE) contribute to the final grade with a weight equal to 60%.

The **Final Grade** of each Module on the scale of 1 to 10 is calculated as:

Final Grade = $(SWA \times 0,1) + (SWA \times 0,1) + (WA \times 0,2) + (FE \times 0,6)$

Establishment of participation right in the final exam:

Participation in the final examination will be allowed, if:

- 1. the sum of the grades of the aforementioned assignments (see a1 and a2) is equal to, or greater than 50% of the assigned grading scale, i.e. at least 20 points out of 100, based on the weights mentioned in points a1 and a2,
- 2. at least 2 of the 3 assignments should be submitted.

SWA & WA grade on the scale of 1 to 100					
SWA1 SWA2 WA Minimum grade that is requir					
(10%)	(10%)	(20%)	for participation in final exams		
SWA1×1	SWA2 × 1	WA×2	20/100		

Laboratory Course Module Evaluation (LCM SOK1):

- $\alpha 1$. Two (2) learning activities (ACT1 & ACT2) that contribute to the laboratory module final grade with a weight equal to 15% each.
- $\alpha 2$. One (1) learning activity (ACT3) that contribute to the laboratory module final grade with a weight equal to 30% each
- α 3. final laboratory project (FLP) contribute to the laboratory module final grade with a weight equal to 40%.

The grade of the learning activities are activated only with a final laboratory project grade equal to or above five (\geq 5.0).

Establishment of the participation right in the final laboratory module project

Participation in the final laboratory module project will be allowed, if:

- 1. the sum of the grades of the aforementioned activities (see a1 and a2) is equal to, or greater than 50% of the assigned grading scale, i.e. at least 30 points out of 100, based on the weights mentioned in points a1 and a2,
- 2. at least 2 of the 3 activities should be submitted.

ACT grade on the scale of 1 to 100				
ACT1	ACT2	ACT3	Minimum grade that is required	

(15%)	(15%)	(30%)	for participation in final exams:
ACT1 × 1.5	ACT2 × 1.5	ACT3 × 3	30/100

The **Final Grade** of SOK1 on the scale of 1 to 10 is calculated as:

Final Grade = $(ACT1\times0,15) + (ACT2\times0,15) + (ACT3\times0,3) + (FLP\times0,4)$

Laboratory Course Module Evaluation (LCM SOK2 & LCM ATM4):

- $\alpha 1$. Two (2) distant learning activities (ACT1 & ACT2) that contribute to the laboratory module final grade with a weight equal to 10% each. **One (1)** distant learning activity (ACT3) with a weight equal to 20% each
- $\alpha 2$. One (1) learning activity (ACT4) that contribute to the laboratory module final grade with a weight equal to 20% each
- $\alpha 3$. final laboratory project (FLP) contribute to the laboratory module final grade with a weight equal to 40%.

The grade of the learning activities is activated only with a final laboratory project grade equal to or above five (\geq 5.0).

Establishment of the participation right in the final laboratory module project

Participation in the final laboratory module project will be allowed, if:

- 1. the sum of the grades of the aforementioned activities (see a1 and a2) is equal to, or greater than 50% of the assigned grading scale, i.e. at least 20 points out of 100, based on the weights mentioned in points a1 and a2,
- 2. at least 2 of the 3 activities should be submitted.

ACT grade on the scale of 1 to 100						
ACT1	ACT2	ACT3	Minimum grade that is required			
(10%)	(10%)	(20%)	for participation in final exams:			
ACT1 × 1	ACT2 × 1	ACT3 × 2	20/100			

- 3. participate in person in the physical presence laboratory,
- 4. achieve an average grade of at least equal to or above five (≥5.0) in all activities of the physical presence laboratory

The **Final Grade** of SOK2 on the scale of 1 to 10 is calculated as:

Final Grade = $(ACT1\times0,1) + (ACT2\times0,1) + (ACT3\times0,2) + (ACT4\times0,2) + (FLP\times0,4)$

Laboratory Course Module Evaluation (LCM ATM2 & ATM3):

- $\alpha 1$. Three (3) learning activities (ACT) that contribute to the laboratory module final grade with a weight equal to 20% each.
- **a2.** One (1) final laboratory project (FLP) contribute to the laboratory module final grade with a weight equal to 40%.

Establishment of the participation right in the final laboratory module project

Participation in the final laboratory module project will be allowed, if:

- 1. achieve an average grade of at least equal to or above five (≥5.0) in all activities
- 2. at least 2 of the 3 Activities should be submitted.

The **Final Grade** of ATM2 & ATM3 on the scale of 1 to 10 is calculated as:

Final Grade = $(ACT1\times0,2) + (ACT2\times0,2) + (ACT3\times0,2) + (FLP\times0,4)$

Information about the Course Modules & Laboratory Course Modules

SOK50 Visual effects history

Code of Course Module: SOK50

ECTS: 10

Type: Compulsory **Semester:** First (1°)

Teaching Language: Greek

Aim – description: This particular course module follows a chronological structure and examines the aesthetic, artistic and cultural dimensions of the evolution of visual effects. The purpose of SOK50 is:

- To show the contribution of visual effects and animation in the development of audiovisual works
- To present the technique of visual effects and the moving image in relation to the art of cinema
- To highlight the importance of visual effects and animation in the evolution of animation.

Learning Outcomes:

Upon successful completion of the module, students will be able to:

- They know the basic stages of development of visual effects and animation.
- Understand the types of visual effects and animation comparatively in relation to the changes of technological developments
- Understand the importance of visual effects and animation and compare and analyze them according to aesthetic and morphological criteria
- Justify changes in animation visual effects in relation to developments in new technologies

Subjects:

- General introduction to the art and technique of visual effects
- Historical origins of visual effects
- Most important stations in the evolution of visual effects

Evaluation: Completion of written assignments during the academic semester which constitute a 40 percent of each student's grade, if a pass is obtained in the final or repetitive examination. Final exam grades constitute a 60 percent of the students' final course grade.

Teaching Methods: Remotely using the Tele-learning Platform of HOU and conducting Group Counseling Meetings.

SOK1 LCM Basic Principles of Motion Pictures

Code of Course Module: SOK1 L.C.M.

ECTS: 10

Type: Compulsory **Semester:** First (1°)

Teaching Language: Greek

Aim – description:

The specific Laboratory module refers to quality features of animation creation, focusing on theoretical training and practical training in specialized topics of 3D animation and quality features of computer animation. The aim is to aquire deep knowledge and practice of specialized technical topics and quality features of 3D motion such as

- Creating and compositing animations on a computer
- Creation of skeleton and point control drivers
- Link skeleton to 3D mesh points
- Skeleton movement with two Kinematics methods (FK and IK)
- Application of basic motion principles to 3D models
- Final performance and output of 3D motion into a 2D animation (rendering)
- Fundamentals of movement (Preparation, plasticity, subsequent movement)

Learning Outcomes:

Upon successful completion of the course module, students will be able to:

- Understand the central points of creative reflection on the fundamental concepts, specialties and qualitative characteristics of 3D motion
- Compare and analyze three-dimensional sequences of movement (3d animation) based on aesthetic criteria and specialized terminology
- Develop general 3D animation creation skills across all creation stages and specialties
- Develop special skills and choose a specific specialty in a group collaborative process of 3D creation.

Subjects

- 3D character design
- Create motion on a computer
- Creating a skeleton
- Animation direction

Teaching Methods: Distance Learning workshop with student projects monitoring.

Teaching Methods - Evaluation - Delivery: By Project.

Use of Information and Communication Technologies: Extensive use of a personal computer. Ability to use lab workstations, and Use of special software. Communication of students through the course platform and email with the teacher.

Teaching Organization: Workshop, filmography study and analysis. The teaching will be remote and interactive, as the teacher will present parts of the material through the respective software and in this process the students will be able to intervene to resolve their questions. of three through the course platform and email with the teacher.

Workshop Facilities: The workshops will take place online through the infrastructure, laboratory equipment and software of the School of Applied Arts and Sustainable Design (SET).

ATM2 L.C.M. Introduction to digital design

Code of Course Module: ATM2 L.C.M.

ECTS: 10

Type: Compulsory **Semester:** First (1°)

Teaching Language: Greek

Aim – description:

The Laboratory Course Module "Introduction to digital design" covers the processes of two-dimensional design on a computer by describing the relevant theories for the analysis and synthesis of two-dimensional digital space. Along the way it introduces students to the environment of three-dimensional design. The aim of the Laboratory Thematic Unit is the perception and creation of space and objects within the digital environment. Upon successful

completion of the Laboratory module, students will have acquired the necessary knowledge to design and perceive objects and sets in the digital space.

Learning Outcomes:

- Understanding and perception of real space through theory and comparing it with digital space.
- Practical Application of Design and Processing of two-dimensional objects in the digital space.
- Digital display of objects and sets.
- Knowledge of the basic rules of image processing and practice through learning software.
- Understanding the basic rules of three-dimensional design.

Subjects

- Perception in digital design
- Introduction to 2D digital design
- Edit and modify 2D objects
- Analysis and synthesis of the two-dimensional digital space
- Introduction to 3D digital design
- Fundamentals of digital image processing

Teaching Methods: Distance Learning, remotely use of the HOU Tele-learning Platform and attending Group Advisory Meetings.

Teaching Methods - Evaluation - Delivery: The students will be trained in software that will cover the purpose of the Lab course module, through the study of manuals, viewing tutorials (videos) and solving self-assessment exercises, alongside supporting their efforts and solving the of their questions through the Group advisory meetings

Use of Information and Communication Technologies: Extensive use of a personal computer. Ability to use lab workstations, and Use of special software. Communication of students through the course platform and email with the teacher.

Teaching Organization: The teaching will be remote and interactive, as the teacher will present parts of the material through the respective software and in this process the students will be able to intervene to resolve their questions.

Workshop Facilities: The workshops will take place online through the infrastructure, laboratory equipment and software of the multimedia and lighting design workshops of the School of Applied Arts and Sustainable Design (SET).

SOK60 Production development for funding

Code of Course Module: SOK60

ECTS: 10

Type: Compulsory
Semester: second (2°)
Teaching Language: Greek

Aim – description:

This module will focus on Developing an Audiovisual Project for Pitching and in particular the method of integrating visual effects and animation into a project's production envelope. The course deals with the business plan of producing packages of audio-visual projects for financing (slate funding) with a focus on visual effects moving image. Topics such as marketing

and entrepreneurship/management are presented. Ways of finding financial resources, promotion and distribution of audio-visual projects, as well as the commercial exploitation of elements through the film (merchandising) are studied. The course focuses on the financial viability and independence of an audiovisual project from the perspective of the integration of visual effects and animation into it. All stages of the production of an audio-visual project are studied in terms of the creative and the technical field. Particular attention is paid to methods and techniques of organizing and implementing a production incorporating visual effects.

Learning Outcomes:

Upon successful completion of the module, students will be able to:

- Organize, compose and present a production file for financing with international standards (pitching)
- Write a complete proposal/design text based on visual effects moving image to submit
 it to funding programs of international and national agencies for the development of
 their audiovisual work
- Commercialize the possibility of producing secondary products (merchandising)
- Use the appropriate technique of a successful business model to promote their audiovisual project (franchising)
- Use their marketing knowledge to achieve their artistic and business/commercial goals
- follow revenue strategies for their project
- Acquire critical thinking to apply more appropriate production management method
- understand the cost of making a decision in terms of time, money, and quality of a project

Subjects

- Marketing of Creative Arts
- Design, organization and presentation of a Book/package for financing an audiovisual project
- Production design of secondary products
- Franchise practices for audiovisual products
- Revenue strategies of an audiovisual project
- Production models from the business sector and types of production

Evaluation: Completion of written assignments during the academic semester which constitute a 40 percent of each student's grade, if a pass is obtained in the final or repetitive examination. Final exam grades constitute a 60 percent of the students' final course grade.

Teaching Methods: Distance Learning, remotely use of the HOU Tele-learning Platform and attending Group Advisory Meetings.

ATM3 L.C.M. Advanced Modeling and Photorealism

Code of Course Module: ATM3 L.C.M.

ECTS: 10

Type: Compulsory
Semester: second (2°)
Teaching Language: Greek

Aim – description: The course module "Advanced Modeling and Photorealism" covers the processes of three-dimensional design on a computer by describing the relevant theories for

the three-dimensional digital space, the creation of objects and their photorealistic display. The aim of the Laboratory course module is to understand the way in which we observe and work in the virtual three-dimensional space. With the successful completion of the module, the students will have acquired the necessary knowledge for the design of three-dimensional objects and their photorealistic visualization.

Learning Outcomes:

- Understanding of practices for processing and transforming 3D objects.
- Familiarity with the characteristics of the virtual camera and its placement methods in relation to space and light.
- Knowledge of the algorithms used for the virtual representation of lighting.
- Application of the basic properties of digital materials and their mapping to objects.
- Knowledge of the main parameters that determine the performance of threedimensional objects in the digital space.

Subjects

- Advanced computer modeling
- Digital camera
- Lighting in the virtual environment
- Digital materials
- Virtual representation and shading algorithms

Teaching Methods: Distance Learning, remotely use of the HOU Tele-learning Platform and attending Group Advisory Meetings.

Teaching Methods - Evaluation - Delivery: The students will be trained in software that will cover the purpose of the Lab course module, through the study of manuals, viewing tutorials (videos) and solving self-assessment exercises, alongside supporting their efforts and solving the of their questions through the Group advisory meetings

Use of Information and Communication Technologies: Extensive use of a personal computer. Ability to use lab workstations, and Use of special software. Communication of students through the course platform and email with the teacher.

Teaching Organization: The teaching will be remote and interactive, as the teacher will present parts of the material through the respective software and in this process the students will be able to intervene to resolve their questions.

Workshop Facilities: The workshops will take place online through the infrastructure, laboratory equipment and software of the School of Applied Arts and Sustainable Design (SET).

SOK2 L.C.M. Advanced animation

Code of Course Module: SOK2 L.C.M.

ECTS: 10

Type: Compulsory
Semester: second (2°)
Teaching Language: Greek

Aim – description:

In the laboratory course module, students will familiarize themselves with the technical practices and methods of creating movement using innovative technologies. More specifically, Motion Capture techniques will be used to create a motion library as well as motion tracking techniques for integrating and synchronizing the motion of a virtual moving

image environment with live action. In addition, there will be an introduction to animation editing methodologies and tools such as Color correction, Green screen, etc.

Learning Outcomes:

Upon successful completion of the Module, students will be able to:

- create motion capture with different techniques
- Use motion capture libraries
- Sync animation to live action movies
- Understand and determine the cinematographic perspective
- Understand the skills and technique required in the composition of moving images

Subjects

- Motion Capture
- Tracking Animation
- Compositing

Teaching Methods: Distance Learning, remotely use of the HOU Tele-learning Platform and attending Group Advisory Meetings.

Teaching Methods - Evaluation - Delivery: The students will be trained in software that will cover the purpose of the Lab course module, through the study of manuals, viewing tutorials (videos) and solving self-assessment exercises, alongside supporting their efforts and solving the of their questions through the Group advisory meetings

Use of Information and Communication Technologies: Extensive use of a personal computer. Ability to use lab workstations, and Use of special software. Communication of students through the course platform and email with the teacher.

Teaching Organization: The teaching will be remote and interactive, as the teacher will present parts of the material through the respective software and in this process the students will be able to intervene to resolve their questions.

Workshop Facilities: The workshops will take place online through the infrastructure, laboratory equipment and software of the School of Applied Arts and Sustainable Design (SET). Attendance is compulsory.

ATM4 L.C.M. Photogrammetry

Code of Course Module: ATM4 L.C.M.

ECTS: 10

Type: Compulsory **Semester:** Third (3°) **Teaching Language:** Greek

Aim – description: The Laboratory course module "Photogrammetry" explains the concept of photogrammetry as a basic imaging method for the restoration and documentation of monuments and archaeological sites. It introduces the basic steps of the photogrammetric process, photogrammetric orientations, photo processing, special photogrammetric equipment and photogrammetric products. The Laser scanner and the methods of producing three-dimensional models, the Digital Terrain Model and the Digital Orthophotomap are presented. The aim of the module is to understand the method of photogrammetry as a basic method of digitization and modeling of archaeological finds, monuments and places. Students can monitor the fieldwork with special photogrammetric equipment and process the digital photos to produce the 3D model.

Learning Outcomes:

- Knowledge of the photogrammetry method.
- Application of the photogrammetric process from the acquisition of the photos as data to the final result which is the three-dimensional model and the digital orthophoto.
- Practical practice in the techniques used in image processing in photogrammetry.
- Knowledge of the process of field mapping with special photogrammetric equipment.
- Knowledge of methodology for obtaining three-dimensional metric information.

Subjects

- Photogrammetric methods and technologies
- Photogrammetric orientations
- Digital image processing and 3D model production

Teaching Methods: Distance Learning, remotely use of the HOU Tele-learning Platform and attending live, a field course.

Teaching Methods - Evaluation - Delivery: Interactive lectures that combine theoretical knowledge with examples. At the same time, practical exercises with application in the field are carried out. Students conduct a continuous dialogue with the teacher. Delivery method is via PC.

Use of Information and Communication Technologies: Use of special photogrammetric equipment of the School of Applied Arts and Sustainable Design (SET). Computer use. Use of Photogrammetry software. Communication of students through the course platform and email with the teacher.

Teaching Organization: Lectures consist of theory and exercises. They are followed by laboratory exercises that enrich the lectures by strengthening the process of understanding and assimilating knowledge. In addition, field training is carried out, which contributes to the development of skills. Writing assignment are finally conducted.

Workshop Facilities: The presence of students in the field activities is mandatory. The School of Applied Arts and Sustainable Design (SET) has the necessary mobile equipment through the lighting design laboratory to carry out the field exercises

SOKDE Master Diploma Thesis

Code of Course Module: SOKDE

ECTS: 20

Type: Compulsory **Semester:** Third (3°)

Teaching Language: Greek

Aim – description: The Master's Thesis will be a field of application of the knowledge acquired in the CMs and LCMs. of PSP and will aim at an overall design project that will be applying principles, techniques and theoretical knowledge in the area of Design for Animation and Visual effects. The Master's Thesis is subject to the general regulation of the Master's Thesis of the HOU with CMs of six-month duration.

The General Regulations for Postgraduate Diploma Theses in a Master's degree with semester-long thesis are available at: <u>General Regulations for the Preparation of Postgraduate</u> <u>Dissertations in a Master's Degree Programme with semester-long Thematic Unit</u>

For more information regarding the Specifications – Useful Material for writing Master's Theses and uploading a Thesis at the H.O.U. Repository, you can go to the Digital Training Area http://courses.eap.gr and especially to the Program of Studies section.

Learning Outcomes: After the end of the Postgraduate Diploma Thesis the students will be able to:

- Carry out original design research work related to the subjects taught, on a wide variety
 of topics of interest,
- Research, compile, verify, and critically assess information, and effectively organize and present it
- Critically and responsibly utilize both primary and secondary sources

Prerequisites: The presentation of the Master's Thesis takes place after the successful completion of the Course Modules of the Program.

Documentation and modeling of monuments and archaeological sites

Subject - Purpose

The purpose of the Graduate Program is to deepen and provide interdisciplinary training for scientists in the recording, documenting, and preserving antiquities and cultural heritage in general. Specifically, the academic fields the program focuses on include topography, architecture, archaeology, archaeometry, as well as engineering sciences, geography and monument conservation.

The goal is a theoretical and practical approach to the documentation of monuments, with emphasis on their discovery, recording, documentation and ultimately their protection. The program thoroughly examines techniques for recording and mapping archaeological sites and monuments, as well as methods for collecting, analysing and evaluating field data and their presentation.

Upon completion of the program, graduates will have acquired the necessary knowledge in the field of recording and documenting monuments aiming at the protection of antiquities and cultural heritage.

Learning Outcomes

The Graduate Program aims to specialize scientists who are:

- Capable of engaging in research in the broader fields of archaeology, topography, architecture, archaeometry and more generally the protection and restoration of archaeological and cultural heritage
- Capable of practicing professionally in the broader areas of archaeology, topography, architecture, archaeometry focusing on the discovery, recording, and documentation of monuments, with the ultimate goal of their protection and restoration
- Able to design, record and document monuments and archaeological sites using modern methods and technologies
- Able to contribute significantly to the discovery and protection of antiquities and cultural heritage in general

Academic Subjects of the Graduate Program

- Cultural Heritage
- Geometric Documentation of monuments
- Geographical Information Systems (GIS)
- Geoinformatics
- Geography
- 2D digital design
- 3D digital design
- Digital photorealism
- Topography
- Photogrammetry
- Archaeometry documentation of materials
- Methods of Archaeological Field Research
- Mechanical documentation of monuments

Learning Credits ECTS

The total credits (ECTS) required to obtain the Master's Degree is 90 ECTS

Characterization of the Graduate Programme: Master of Science (MSc)

Classification according to UNESCO ISCED-2011

Based on the level of study: 7

Classification according to UNESCO ISCED-2013

Based on the field of education: 0288 - Inter-disciplinary programmes and qualifications involving arts and humanities

0211 Audiovisual techniques and media production

0222 History and Archaeology

0731 Architecture and town planning

Teaching Language

The teaching language of the programme, as well as the preparation of the diploma thesis, is Greek.

Duration of studies

The minimum length of time to complete the program is three (3) academic semesters.

Admission Requirements

The Post-Graduate Programme accepts applicants holding an academic higher education degree in a related subject, or of other subjects, provided that they also submit a formal Declaration of the candidate stating: "I hereby declare that I possess the necessary level of knowledge of the subjects covered in the Study Programme...... and I am able to meet its requirements".

The programme is offered in Greek.

The knowledge of a foreign language and good computer-Internet skills would be useful for the successful participation in the programme.

Note:

Holders of a degree or diploma of higher education means graduates of Greek Universities or Polytechnics or Higher School of Fine Arts or Higher School of Pedagogical and Technological Education or Higher Technological Educational Institutions (ATEI) or those who hold academically equivalent first cycle degrees from recognized foreign educational institutions with the degrees awarded by the Greek Higher Educational Institutions, in accordance with the provisions of article 304 of Law No. 4957/2022 (Government Gazette 141/21.07.2022, vol.A')

Marking:

For the evaluation of the application to the Postgraduate Studies Programme, it will be examined whether the candidate's institution of study is or may be included in the National Register of Recognised Higher Education Institutions of Foreign Countries and whether the candidate's degree is or may be included in the National Register of Types of Degrees of Recognised Institutions of Foreign Countries.

The Hellenic Open University, if the degree is included in the list of article 307 of Law No. 4957/2022, must request a "Certificate of Place of Study", which is issued and sent by the foreign university. If the place of study or part of the studies is confirmed as the Greek territory, the degree is not recognized, unless the part of the studies that took place in the Greek territory is in a public higher education institution or in a recognized foreign educational institution within the meaning of paragraph b) of article 299 of Law No. 4957/2022.

Teaching material

The teaching material, on which the Programme is based and which the students must study on a regular basis during their studies, is made available to them either in digital or printed form. This is basic and supplementary material related to the content of each Course Module.

Communication

Student Registry Department:

Tel.: +30 2610367312 E-mail: atm@eap.gr

Student service desk:

Tel.: +30 2610367805 - 2610367806 - 2610367807 -2610367426 E-mail: info@eap.gr

Programme Structure

During the studies, the student is required to complete either three (3) Course Modules., three (3) Laboratory Course Modules (L.C.M.) and to prepare the Master Diploma Thesis; either two (2) Course Modules, four (4) Laboratory Course Modules (L.C.M.) and to prepare the Master Diploma Thesis. The total number of credits (ECTS) required to obtain the Master's Degree is 90 ECTS. The structure of the programme is as follows:

1st Semester (30 ECTS)

ATM50	Cultural Heritage	(C ¹ ,10 ECTS)
ATM1 L.C.M.	Spatial measurement and documentation methods	(C,10 ECTS)
ATM2 L.C.M.	Introduction to Digital Design	(C,10 ECTS)
	2 nd Semester (30 ECTS)	
ATM60	Field Data Collection Methods	(E ² ,10 ECTS)
ATM61	Archaeometry	(E ² ,10 ECTS)
ATM3 L.C.M.	Advanced Modeling and Photorealism	(E ² ,10 ECTS)
ATM4 L.C.M.	Photogrammetry	(C,10 ECTS)
	3 rd Semester (30 ECTS)	
ATMDE	Master Diploma Thesis	(C,30 ECTS)
Notes:		

C1: Compulsory E²: Elective

Guidelines on Module selection

You can choose from one (1) to three (3) Modules per semester (30 ECTS).

In the process of registering for a Course Module (C.M.)/Laboratory Course Module (L.C.M.), the C.Ms/ L.C.Ms of the previous semesters must be successfully completed first and then the C.M/ L.C.M of the next semester must be selected. For example, if you have successfully completed one (1) Module from the first semester and in the second semester you wish to select three (3) Modules/Laboratory Course Modules, you must opt for two (2) Modules/Laboratory Course Modules from the first semester and one (1) from the second semester and so on.

However, there are the following limitations regarding the selection of Laboratory Course Modules of the ATM per semester:

In the first semester if you wish to choose a Module or Laboratory Module, choose either ATM50 or ATM2 L.C.M. If you wish to choose two (2) C.Ms/ L.C.Ms choose either ATM50 and ATM2 L.C.M, or ATM2 L.C.M and ATM1 L.C.M.

In the second semester if you wish to choose the ATM3 L.C.M, you must have successfully attended the ATM2 L.C.M in the previous semester. Also, in the second semester if you wish to choose ATM4 L.C.M you must have successfully attended ATM1 L.C.M and ATM2 L.C.M in the previous semester.

The preparation of the Master Diploma Thesis presupposes the successful attendance of either the three (3) C.Ms and of the three (3) L.C.Ms, or of the two (2) C.Ms and four (4) L.C.Ms of the 1st and 2nd semesters.

The presentation of the Master Diploma Thesis (30 ECTS) takes place after the successful completion of all the program's Modules/ Laboratory Modules (60 ECTS).

For the award of the Postgraduate Diploma of Specialisation, it is mandatory to successfully complete either: three (3) C.Ms, three (3) L.C.Ms and as well as the successful preparation and presentation of the Master Diploma Thesis, or two (2) C.Ms, four (4) L.C.Ms as well as the successful preparation and presentation of the Master Diploma Thesis.

A. Course Module Evaluation

The evaluation will be carried out by the preparation of three (3) written assignments during the academic semester with a weighting factor in the formation of the final grade of Course Module by 40%. Each assignment is graded out of 10.

Specifically:

- **a1**. Two (2) Short Written Assignments (SWA) that contribute to the final grade with a weight equal to 10% each of them.
- **a2**. One (1) Written Assignment (WA) which contributes to the final grade with a weight equal to 20%.

The grade of the written assignments (SWA & WA) is secured when a grade equal to or above the passing grade (≥5) in the final exam or resit is achieved only.

a3. Final exam or resit (FE) contribute to the final grade with a weight equal to 60%.

<u>Note:</u> At the discretion of the Teaching Staff Group may per Course Module to post in the Digital Education Platform (courses) optional -non-graded- educational activities (e.g. closed-type questions, etc.), which nevertheless actively contribute to the student's study.

Establishment of participation right in the final exam:

Participation in the final examination will be allowed, if:

- 1. the sum of the grades of the aforementioned assignments (see a1 and a2) is equal to, or greater than 50% of the assigned grading scale, i.e. at least 20 points out of 100, based on the weights mentioned in points a1 and a2,
- 2. at least 2 of the 3 assignments should be submitted.

SWA & WA grade on the scale of 1 to 100					
SWA1 SWA2 WA Minimum grade that is req					
(10%)	(10%)	(20%)	for participation in final exams		
SWA1 × 1	SWA2 × 1	WA×2	20/100		

B. Laboratory Course Module Evaluation (ATM2 LCM and ATM3 LCM)

- **a1.** Three (3) learning activities (ACT) that contribute to the laboratory module final grade with a weight equal to 20% each.
- **a2.** One (1) final laboratory project (FLP) contribute to the laboratory module final grade with a weight equal to 40%.

Each remote laboratory activity, as well as the final laboratory work/project, are evaluated on a scale of ten (10).

Establishment of the participation right in the final laboratory module project

Participation in the final laboratory module project will be allowed, if:

- achieve an average grade of at least equal to or above five (≥5.0) from a total of three
 (3) laboratory activities,
- 2. at least 2 of the 3 Activities should be submitted.

The **Final Grade** of ATM2 & ATM3 on the scale of 1 to 10 is calculated as:

Final Grade = $(ACT1\times0,2) + (ACT2\times0,2) + (ACT3\times0,2) + (FLP\times0,4)$

	Final Grade				
	ACT1	ACT2	ACT3	Final laboratory project	
Weight	20%	20%	20%	40%	
Compulsory	at least 2 of the 3	Activities should l	be submitted	Yes	

Establishment of the participation right in the final laboratory module project

Participation in the final laboratory module project will be allowed, if:

- accumulate an average grade of ≥5.0 (five) from a total of three (3) laboratory activities,
- 2. at least 2 of the 3 activities should be submitted.

In the event that the student does not manage to achieve an average of \geq 5.0 (five), he/she is not entitled to submit the final laboratory module project and must re-enroll in the laboratory course module in the following semester with full educational and financial responsibilities.

C. Laboratory Course Module Evaluation (ATM1 LCM and ATM4 LCM)

- **a1.** Two (2) distant learning activities (ACT1 & ACT2) that contribute to the laboratory module final grade with a weight equal to 10% each. **One (1)** distant learning activity (ACT3) with a weight equal to 20% each
- **a2.** One (1) learning activity (ACT4) that contribute to the laboratory module final grade with a weight equal to 20% each
- **a3.** final laboratory project (FLP) contribute to the laboratory module final grade with a weight equal to 40%.

The grade of the learning activities is activated only with a final laboratory project grade equal to or above five (\geq 5.0).

The **Final Grade** of ATM1 LCM and ATM4 LCM on the scale of 1 to 10 is calculated as:

Final Grade = $(ACT1\times0,1) + (ACT2\times0,1) + (ACT3\times0,2) + (ACT4\times0,2) + (FLP\times0,4)$

				Final Grade	
	ACT1	ACT2	ACT3	Physical	Final laboratory
				presence	project
				laboratory	
Weight	10%	10%	20%	20%	40%
Compulsory	at least 2 of the 3 Activities should be			Yes	Yes
		submitted			

Establishment of the participation right in the final laboratory module project

Participation in the final laboratory module project will be allowed, if:

- 1. the sum of the grades of the aforementioned activities (see a1 and a2) is equal to, or greater than 50% of the assigned grading scale, i.e. at least 20 points out of 100, based on the weights mentioned in points a1 and a2,
- 2. at least 2 of the 3 activities should be submitted.

ACT grade on the scale of 1 to 100					
ACT1	ACT2	ACT3	Minimum grade that is required		
(10%)	(10%)	(20%)			

			for the participation in the final laboratory module project
ACT1 × 1	ACT2 × 1	ACT3 × 2	20/100

- 3. participate in person in the physical presence laboratory,
- 4. achieve an average grade of at least equal to or above five (≥5.0) in all activities of the physical presence laboratory

In the event that the student does not secure the required credits for the submission of the final project, then he/she is re-registered at laboratory course module -with full educational and financial obligations- the following academic semester.

ATM50 - Cultural Heritage

Module Code: ATM50 ECTS Credits: 10

Module Type: Compulsory

Semester: First (1st)
Language: Greek

Aim – description: The Course Module "Cultural Heritage" introduces students to the diversity of cultural heritage and its academic study. It familiarizes students with the essential terms and concepts necessary for understanding specialized texts related to cultural heritage and its protection. It includes a historical overview and survey of the international theoretical framework and contemporary approaches at the national and international levels for the protection, intervention methods, management, and interpretation of cultural heritage.

Learning Outcomes: Upon successful completion of the course, female and male students will be able to:

- Understand the contemporary concept of monument, cultural goods, the concept of cultural heritage, and its categorization according to International Organizations.
- Comprehend the basic terminology corresponding to various types of interventions on monuments.
- Acquire knowledge of the main international and national entities for the protection of cultural heritage.
- Solidify the importance of recording and documenting cultural heritage.
- Familiarize themselves with modern perspectives on the study of Architectural History.
- Gain insight into the main trends in architectural restoration with a focus on the 19th and 20th centuries, up to the most contemporary approaches to the subject, through maps and decisions of international organizations.
- Understand the theoretical principles of intervention and critically approach interventions in monuments and monumental ensembles in Greece and internationally.

Academic Subjects of the Module:

- Introduction to Cultural Heritage Basic Concepts
- Cultural heritage protection bodies of at international and national levels
- Introduction to the scientific field of History of Architecture
- Theoretical principles and practical methods for the protection of cultural heritage at international and national levels

Prerequisites: There are no prerequisites for this module.

Teaching method: Remotely using the Tele-learning Platform of HOU and conducting Group Counseling Meetings.

ATM1 L.C.M.: Spatial measurement and documentation methods

Module Code: ATM1 ECTS Credits: 10

Module Type: Compulsory

Semester: First (1st)
Language: Greek

Aim – description: The Laboratory Course Module "Spatial measurement and documentation methods" explains the concept of geometric documentation and mapping for monuments and archaeological sites. It presents the main categories of surveying, their methodologies and their content. It describes the method of surveying, explains the geometric data of the site and the fundamental problems of surveying, such as horizontal, vertical and tachymetric surveying. The Module teaches the basic features of Geographic Earth Information Systems (GIS) for data collection, management, analysis and visualization. Explains the concept of georeferencing in spatial data, as well as the integration of spatial analyor descriptive data to help implement spatial analysis. A description is given of spatial data formats and Georeferencing, as well as the basic models used to manage the data.

The objective of the Laboratory Course Module is to gain an understanding of the methods and techniques used for the geometric documentation of monuments and archaeological sites used for the restoration and conservation of monuments. Students can observe fieldwork with special surveying equipment and process the data in real time. They then gain knowledge of spatial data analysis and skills in the construction of thematic maps and their visualization.

Learning Outcomes: Upon successful completion of the course module, students will be able to:

- Implement imaging methods for the geometric documentation of monuments, archaeological sites and excavations.
- Understand topographic surveying methods and the creation of three-dimensional models based on field measurements.
- Embed the practicalities of field surveying with specialised surveying equipment.
- Understand the optimum performance of the final product of surveying a monument in order to visualize it.
- Know the function of Geographic Earth Information Systems (GIS) and their basic features.
- Understand the methods of correlation between geographic and descriptive data of archaeological works.
- Know the different ways of rendering through digital maps and interactive maps (Webbased GIS).
- Distinguish the specificities of each topographic problem and to choose the optimal mapping method.

Academic Subjects of the L.C.M.:

- Methods and techniques for the geometric documentation of monuments
- Topographic mapping method
- Introduction to Geographical Information Systems (GIS)

Prerequisites: There are no prerequisites for this Laboratory module.

Teaching Methods: Distance Learning, remotely use of the HOU Tele-learning Platform and attending live, a field course.

Teaching Methods - Evaluation - Delivery: Interactive lectures that combine theoretical knowledge with examples. At the same time, practical exercises with application in the field are carried out. Students conduct a continuous dialogue with the teacher. Delivery method is via PC.

Use of Information and Communication Technologies: Use of special topographic equipment. Computer use. Use of GIS software. Communication of students through the course platform and email with the teacher.

Teaching Organization: Lectures consist of theory and exercises. They are followed by laboratory exercises that enrich the lectures by strengthening the process of understanding and assimilating knowledge. In addition, field training is carried out, which contributes to the development of skills. Writing assignment are finally conducted.

ATM2 L.C.M.: Introduction to Digital Design

Module Code: ATM2 ECTS Credits: 10

Module Type: Compulsory

Semester: First (1st) Language: Greek

Aim – description: The Laboratory Course Module "Introduction to digital design" covers the processes of two-dimensional design on a computer by describing the relevant theories for the analysis and synthesis of two-dimensional digital space. Along the way it introduces students to the environment of three-dimensional design. The aim of the Laboratory Thematic Unit is the perception and creation of space and objects within the digital environment. Upon successful completion of the Laboratory module, students will have acquired the necessary knowledge to design and perceive objects and sets in the digital space.

Learning Outcomes: Upon successful completion of the Thematic Unit, students will be able to:

- Understand and perceive real space through theory and comparison with digital space.
- Design and Process two-dimensional objects in digital space.
- Represent digitally objects and sets.
- Have a basic knowledge of image processing rules and practice through software learning.
- Understand the basic rules of three-dimensional design.

Academic Subjects of the L.C.M.:

- The concept in digital design
- Introduction to two-dimensional digital design
- Editing and modifying two-dimensional objects
- Analysis and synthesis of two-dimensional digital space
- Introduction to three-dimensional digital design
- Basic principles of digital image processing

Prerequisites: There are no prerequisites for this Laboratory module.

Teaching Methods: Distance Learning, remotely use of the HOU Tele-learning Platform and attending Group Advisory Meetings.

Teaching Methods - Evaluation - Delivery: The students will be trained in software that will cover the purpose of the Lab course module, through the study of manuals, viewing tutorials (videos) and solving self-assessment exercises, alongside supporting their efforts and solving the of their questions through the Group advisory meetings

Use of Information and Communication Technologies: Extensive use of a personal computer. Ability to use lab workstations, and Use of special software. Communication of students through the course platform and email with the teacher.

Teaching Organization: The teaching will be remote and interactive, as the teacher will present parts of the material through the respective software and in this process the students will be able to intervene to resolve their questions.

ATM60: Field Data Collection Methods

Module Code: ATM60 ECTS Credits: 10 Module Type: Elective Semester: Second (2nd) Language: Greek

Aim – description: The Course Module "Field Data Collection Methods" covers the main concepts, methods, and techniques used in field research both A) for the excavation of antiquities (archaeological field research) and B) for the protection and restoration of monuments. The goal of the thematic unit is to understand the methods and techniques required for making well-documented decisions during the planning and management of archaeological investigations and projects.

Learning Outcomes: Upon successful completion of the course, female and male students will be able to:

- Understand the organizational and legislative framework within which field research operates, both for uncovering of antiquities (excavation) and the protection of antiquities (stabilization/restoration).
- Familiarize themselves with various techniques for collecting, documenting, and evaluating data used today in field research, both for excavation and the protection of antiquities (stabilization/restoration).
- Acquire knowledge of ways to develop the necessary skills for recognizing, researching, and evaluating data during fieldwork.
- Comprehend the practical aspects as well as the problems that arise during the execution of archaeological projects, and recognize their impact on the planning of archaeological projects.

Academic Subjects of the module:

- Organizational and legislative framework for the disclosure and protection of antiquities
- Excavation and other archaeological field research
- Methods of data collection and evaluation for designing monument protection programs

Prerequisites: There are no prerequisites for this module.

Teaching method: Remotely using the Tele-learning Platform of HOU and conducting Group Counseling Meetings.

ATM61: Archaeometry Module Code: ATM61 ECTS Credits: 10

Module Type: Elective Semester: Second (2nd) Language: Greek

Aim – description: The course module "Archaeometry" aims to provide basic and applied education and research in the scientific field of archaeometry and isotopic archaeological analysis, which involves the application of Stable Isotopes to archaeological materials (radiocarbon, stable isotopes, trace elements). Special emphasis is given to issues related to the characterization and origin of archaeological materials, the reconstruction and evolution of the ancient environment, the investigation of paleodiet, and the diagnosis of the deterioration of ancient materials.

Learning Outcomes: Upon successful completion of the thematic unit, female and male students will be able to:

- Understand the methods of dating archaeological materials.
- Evaluate the characterization, origin, and investigation of the technology of ancient structural and functional materials used in antiquity.
- Comprehend the degree of deterioration of archaeological materials and develop conservation material.
- Synthesize elements enabling the reconstruction of the ancient and archaeological environment, paleodiet, and daily life.
- Understand the methods of isotopic analysis with the aim of drawing conclusions on cultural heritage issues.

Academic Subjects of the module:

- Introduction to archaeometry and isotopic analysis
- Methods of dating ancient materials
- Diagnostic methods for archaeological materials
- Geophysical surveys

Prerequisites: There are no prerequisites for this module.

Teaching method: Remotely using the Tele-learning Platform of HOU and conducting Group Counseling Meetings.

ATM3 L.C.M.: Advanced Modelling and Photorealism

Module Code: ATM3 ECTS Credits: 10 Module Type: Elective Semester: Second (2nd) Language: Greek

Aim – description: The course module "Advanced Modeling and Photorealism" covers the processes of three-dimensional design on a computer by describing the relevant theories for the three-dimensional digital space, the creation of objects and their photorealistic display. The aim of the Laboratory course module is to understand the way in which we observe and

work in the virtual three-dimensional space. With the successful completion of the module, the students will have acquired the necessary knowledge for the design of three-dimensional objects and their photorealistic visualization.

Learning Outcomes: Upon successful completion of the course module, students will be able to:

- Understanding of practices for processing and transforming 3D objects.
- Familiarity with the characteristics of the virtual camera and its placement methods in relation to space and light.
- Knowledge of the algorithms used for the virtual representation of lighting.
- Application of the basic properties of digital materials and their mapping to objects.
- Knowledge of the main parameters that determine the performance of threedimensional objects in the digital space.

Academic Subjects of the L.C.M.:

- Advanced computer modelling
- Digital camera
- Lighting in the virtual environment
- Digital materials
- Virtual representation and shading algorithms

Prerequisites: There are no prerequisites for this Laboratory module.

Teaching Methods: Distance Learning, remotely use of the HOU Tele-learning Platform and attending Group Advisory Meetings.

Teaching Methods - Evaluation - Delivery: The students will be trained in software that will cover the purpose of the Lab course module, through the study of manuals, viewing tutorials (videos) and solving self-assessment exercises, alongside supporting their efforts and solving the of their questions through the Group advisory meetings

Use of Information and Communication Technologies: Extensive use of a personal computer. Ability to use lab workstations, and Use of special software. Communication of students through the course platform and email with the teacher.

Teaching Organization: The teaching will be remote and interactive, as the teacher will present parts of the material through the respective software and in this process the students will be able to intervene to resolve their questions.

ATM4 L.C.M.: Photogrammetry

Module Code: ATM4 ECTS Credits: 10

Module Type: Compulsory **Semester:** Second (2nd)

Language: Greek

Aim – description: The Laboratory course module "Photogrammetry" explains the concept of photogrammetry as a basic imaging method for the restoration and documentation of monuments and archaeological sites. It introduces the basic steps of the photogrammetric process, photogrammetric orientations, photo processing, special photogrammetric equipment and photogrammetric products. The Laser scanner and the methods of producing three-dimensional models, the Digital Terrain Model and the Digital Orthophotomap are presented. The aim of the module is to understand the method of photogrammetry as a basic

method of digitization and modeling of archaeological finds, monuments and places. Students can monitor the fieldwork with special photogrammetric equipment and process the digital photos to produce the 3D model.

Learning Outcomes: Upon successful completion of the course module, students will be able to:

- Knowledge of the photogrammetry method.
- Application of the photogrammetric process from the acquisition of the photos as data to the final result which is the three-dimensional model and the digital orthophoto.
- Practical practice in the techniques used in image processing in photogrammetry.
- Knowledge of the process of field mapping with special photogrammetric equipment.
- Knowledge of methodology for obtaining three-dimensional metric information.

Academic Subjects of the L.C.M.:

- Photogrammetric methods and technologies
- Photogrammetric orientations
- Digital image processing and 3D model generation

Prerequisites: There are no prerequisites for this Laboratory module.

Teaching Methods: Distance Learning, remotely use of the HOU Tele-learning Platform and attending live, a field course.

Teaching Methods - Evaluation - Delivery: Interactive lectures that combine theoretical knowledge with examples. At the same time, practical exercises with application in the field are carried out. Students conduct a continuous dialogue with the teacher. Delivery method is via PC.

Use of Information and Communication Technologies: Use of special photogrammetric equipment of the School of Applied Arts and Sustainable Design (SET). Computer use. Use of Photogrammetry software. Communication of students through the course platform and email with the teacher.

Teaching Organization: Lectures consist of theory and exercises. They are followed by laboratory exercises that enrich the lectures by strengthening the process of understanding and assimilating knowledge. In addition, field training is carried out, which contributes to the development of skills. Writing assignment are finally conducted.

ATMDE: Master Diploma Thesis

Module Code: ATMDE

ECTS Credits: 30

Module Type: Compulsory Semester: Third (3rd) Language: Greek

Aim – description: The Master's Diplomatic Thesis is prepared in accordance with the Regulation for the Preparation of Master's Diplomatic Theses with six-month duration. It is possible for students to form group diploma theses with practical application in photogrammetry, according to the Master's Thesis Regulations of the HOU.

The General Regulations for Postgraduate Diploma Theses in a Master's degree with semester-long thesis are available at: <u>General Regulations for the Preparation of Postgraduate</u> <u>Dissertations in a Master's Degree Programme with semester-long Thematic Unit</u>

Learning Outcomes: After the end of the Master Diploma Thesis the students will be able to:

- conduct original research in design, related to the knowledge of the thematic modules,
- search, collect, verify, critically-synthetically process and present information effectively,
- handle both primary and secondary sources critically and responsibly.
- Analyse case studies
- carry out a survey study of a monument or archaeological site
- carry out a documentation study of a monument or archaeological site

Prerequisites: The presentation of the Master Diploma Thesis takes place after the successful completion of the Course Modules of the Programme.

Annex

Certification of English competency at level B2

English competency (level B2) is proven according to article 10, Presidential Decree 85/2022 "Determination of qualifications for appointment in the public sector (Qualification-Department)" (A' 232), in combination with Part C' and namely "LANGUAGE CERTIFICATES" of no. 20/01.02.2023 "Amendment of no. 94/20.6.2022 of the decision of the SUPREME COUNCIL FOR CIVIL PERSONNEL SELECTION (ASEP)"Procedure for determining the fixed parts of the content of staff selection announcements based on predetermined and objective criteria (Articles 28 - 30 of Law 4765/2021) (B' 3614)" (B' 594) with language proficiency certificates.

Language Certificates

The table below shows the language certificates - level (B2) of English Competency that are accepted as well as the issuing body.

Certification of English competency at level B2 can be proved as follows:

- AIM Awards Level 1 Certificate in ESOL International (B2) (Listening, Reading, Writing, Speaking)
- AIM Qualifications Level 1 Certificate in ESOL International (B2) (Anglia Advanced)
 (Listening, Reading, Writing, Speaking)
- Ascentis Level 1 Certificate in ESOL International (CEF B2)
- Assessment Board for Language Examinations: Level B2 (ABLE B2) Hellenic American University (Nashua, New Hampshire, USA)
- BULATS English Language Test, overall score 60-74, CAMBRIDGE UNIVERSITY or CAMBRIDGE ASSESSMENT ENGLISH (For certificates issued by 19.11.2019)
- BUSINESS ENGLISH CERTIFICATE VANTAGE (BEC VANTAGE) University of Cambridge Local Examinations Syndicate (UCLES) or CAMBRIDGE ASSESSMENT ENGLISH
- BUSINESS ENGLISH CERTIFICATE PRELIMINARY CAMBRIDGE ASSESSMENT ENGLISH overall score 160-170
- BUSINESS ENGLISH CERTIFICATE VANTAGE CAMBRIDGE ASSESSMENT ENGLISH overall score 160-179
- CERTIFICATE IN ADVANCED ENGLISH CAMBRIDGE ASSESSMENT ENGLISH overall score 160-179
- FIRST CERTIFICATE IN ENGLISH CAMBRIDGE UNIVERSITY or CAMBRIDGE ASSESSMENT ENGLISH
- FIRST CERTIFICATE IN ENGLISH CAMBRIDGE ASSESSMENT ENGLISH overall score 160-179
- CERTIFICATE IN INTEGRATED SKILLS IN ENGLISH ISE II TRINITY COLLEGE LONDON
- CITY & GUILDS LEVEL 1 CERTIFICATE IN ESOL INTERNATIONAL (reading, writing and listening) - COMMUNICATOR - and CITY & GUILDS LEVEL 1 CERTIFICATE IN ESOL INTERNATIONAL (Spoken) - COMMUNICATOR - (They are cumulatively submitted to demonstrate good language proficiency)
- CITY & GUILDS CERTIFICATE IN INTERNATIONAL ESOL COMMUNICATOR and CITY &
 GUILDS CERTIFICATE IN INTERNATIONAL SPOKEN ESOL COMMUNICATOR (They are
 cumulatively submitted to demonstrate good language proficiency)

- (ECCE)- CERTIFICATE OF COMPETENCY IN ENGLISH MICHIGAN UNIVERSITY (ENGLISH LANGUAGE INSTITUTE or Cambridge Michigan Language Assessments - CaMLA or Michigan Language Assessment)
- EDI Level 1 Certificate in ESOL International JETSET Level 5 (CEF B2)
- ESB Level 1 Certificate in ESOL International All Modes (Council of Europe Level B2)
- INTERNATIONAL ENGLISH LANGUAGE TESTING SYSTEM (IELTS) from University of Cambridge Local Examinations Syndicate (UCLES) or CAMBRIDGE ASSESSMENT ENGLISH – The British Council – IDP Education Australia IELTS Australia (with score 5,5-6,5)
- GA Level 1 Certificate in ESOL International CEFR: B2
- GA Level 1 Certificate in ESOL International (Classic B2)
- B2- LanguageCert Level 1 Certificate in ESOL International (Listening, Reading, Writing) (Communicator B2) and B2- LanguageCert Level 1 Certificate in ESOL International (Speaking) (Communicator B2) (They are cumulatively submitted to demonstrate good language proficiency)
- LanguageCert Test of English (LTE) LanguageCert Level 1 Certificate in ESOL International (Listening, Reading) (LanguageCert Test of English B2) (issued by 30.06.2024)
- LanguageCert Level 1 Certificate in ESOL International (Listening, Reading, Writing, Speaking) (LanguageCert Test of English B2)
- LanguageCert Level 1 Certificate in ESOL International (Listening, Reading, Writing, Speaking) (LanguageCert Academic B2)
- LanguageCert Level 1 Certificate in ESOL (Listening, Reading, Writing, Speaking) (LanguageCert General B2)
- LONDON TESTS OF ENGLISH LEVEL 3 UPPER INTERMEDIATE COMMUNICATION-EDEXCEL
- EDEXCEL LEVEL I CERTIFICATE IN ESOL INTERNATIONAL (CEF B2)
- LRN Level 1 Certificate in ESOL International (CEF B2)
- MET MICHIGAN ENGLISH TEST (Listening, Reading, Speaking) score from 157 -189 from Michigan Language Assessment or CAMBRIDGE MICHIGAN LANGUAGE ASSESSMENTS-CaMLA (issued by 30.06.2024)
- MET MICHIGAN ENGLISH TEST (Listening, Reading issued by 30.06.2024 or Listening, Reading, Speaking, Writing) score from 53-63 tou Michigan Language Assessment
- MICHIGAN ENGLISH LANGUAGE ASSESSMENT BATTERY (MELAB) score 80-90, CAMBRIDGE MICHIGAN LANGUAGE ASSESSMENTS or MICHIGAN LANGUAGE ASSESSMENT
- Michigan State University Certificate of English Language Competency (MSU CELC): CEF B2
- NOCN Level 1 Certificate in ESOL International (B2)
- NYLC –NEW YORK LANGUAGE CENTER CERTIFICATE Level B2
- OCNLR Level 1 Certificate in ESOL International (CEFR B2)
- OCNW Certificate in ESOL International at Level 1 (Common European Framework equivalent level B2) (by 31/8/2009)
- Open College Network West Midlands Level 1 Certificate in ESOL International (CEFR B2)
- PEARSON EDI Level 1 Certificate in ESOL International (CEF B2)
- PEARSON LCCI LEVEL 1 CERTIFICATE IN ESOL INTERNATIONAL (CEFR B2)
- ESOL INTERNATIONAL (CEFR B2)
- PEARSON TEST OF ENGLISH GENERAL LEVEL 3 UPPER- INTERMEDIATE COMMUNICATION - EDEXCEL

- PEARSON EDEXCEL LEVEL I CERTIFICATE IN ESOL INTERNATIONAL (CEF B2) (ENGLISH INTERNATIONAL CERTIFICATE)
- PEARSON LCCI EFB LEVEL 3 (Units: Reading, Writing, Listening, Speaking, in case one
 of those is graded as "Pass")
- PEARSON LCCI EFB LEVEL 2 (Units: Reading, Writing, Listening, Speaking, "Distinction" or "Credit")
- PRELIMINARY ENGLISH TEST, CAMBRIDGE ASSESSMENT ENGLISH overall score 160-170
- SEG AWARDS Level 1 Certificate in ESOL International (CEF B2) SKILLS & EDUCATION GROUP AWARDS
- TEST OF ENGLISH FOR INTERNATIONAL COMMUNICATION (TOEIC Listening, Reading)
 EDUCATIONAL TESTING SERVICE/ CHAUNCEY, USA, score 505 780 issued by 30.06.2024
- TEST OF ENGLISH FOR INTERNATIONAL COMMUNICATION -TOEIC 4-Skills (Listening, Reading, Speaking, Writing) EDUCATIONAL TESTING SERVICE (ETS), Level B2
- Test of Interactive English, B2 Level (ACELS)
- Test of Interactive English, B2 Level (Gatehouse Awards)
- Test of Interactive English, B2 + Level (ACELS)
- The British Council Aptis ESOL International Certificate Level 1 (Aptis ESOL Advanced or Aptis ESOL General)
- VTCT (ITEC) Level 1 Certificate in ESOL International (B2) or VTCT Skills (ITEC) Level 1 Certificate in ESOL International (B2)
- National Foreign Language Exam System (KPG) equivalent level of Law 2740/1999, as replaced by paragraph 19, Article 13, of Law 3149/2003.

English competency (level B2) is also proven with certificates of other institutions (not limited to universities) of an equivalent level, irrespective of their legal form, provided they are certified or recognized by the competent authority of the country concerned for conducting examinations and issuing certificates of proficiency in English at the appropriate level. These certificates must be accompanied by a proof document from the issuing body that both the issuing body and the language certificate competency are certified by the competent national authority and also and that the certification also concerns the evaluation of basic communication skills (written language production, oral language production, written language comprehension and oral language comprehension).

If there is no certification or recognition body in the country concerned, a certificate from the relevant Ministry or Embassy of Greece is required, confirming that the certificates issued by the above bodies to third parties for whom English is not a native language are accepted in public services of that country as valid evidence of English at the appropriate level according to the Common European Framework of Reference for Languages (CEFR). The competent regulatory authority for Great Britain is the Office of Qualifications and Examinations Regulation (Ofqual).

General notes:

- Advanced level foreign language certificates also prove knowledge of a lower (required) level of the foreign language.
- Foreign Language Teaching Certification does not prove the competence in a foreign language. In order to prove their competence in the foreign language, candidates who

- hold the relevant certification must provide the foreign language certificates as provided for in this Annex where applicable
- All foreign language degrees must be accompanied by their official translation into the Greek language, except the above English language proficiency certificates, which are accepted without requiring any translation and validation.